A review of thermal energy storage in compressed air energy storage system

被引:148
|
作者
Zhou, Qian [1 ]
Du, Dongmei [1 ]
Lu, Chang [1 ]
He, Qing [1 ]
Liu, Wenyi [1 ]
机构
[1] North China Elect Power Univ, Sch Energy Power & Mech Engn, Beijing 102206, Peoples R China
基金
国家重点研发计划;
关键词
Compressed air energy storage; Thermal energy storage; Energy system; Review; THERMODYNAMIC ANALYSIS; HEAT-EXCHANGERS; CAES PLANT; EXERGY; PERFORMANCE; INTEGRATION; SIMULATION; PRINCIPLES; DESIGN; MODEL;
D O I
10.1016/j.energy.2019.115993
中图分类号
O414.1 [热力学];
学科分类号
摘要
Compressed air energy storage (CAES) is a large-scale physical energy storage method, which can solve the difficulties of grid connection of unstable renewable energy power, such as wind and photovoltaic power, and improve its utilization rate. How to improve the efficiency of CAES and obtain better economy is one of the key issues that need to be studied urgently. Thermal energy storage (TES) is an effective method to solve this issue. Firstly, this paper briefly introduces the development history of CAES. Taking advanced adiabatic CAES (AA-CAES) as an example, the basic principle, model and key parameters of TES in CAES are summarized. Then, the TES research and its application in CAES are discussed in detail. Finally, the future research and development of TES in CAES is prospected. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Design of thermal energy storage unit for Compressed Air Energy Storage system
    Szybiak, Maciej
    Jaworski, Maciej
    [J]. 17TH INTERNATIONAL CONFERENCE HEAT TRANSFER AND RENEWABLE SOURCES OF ENERGY (HTRSE-2018), 2018, 70
  • [2] Experimental study of compressed air energy storage system with thermal energy storage
    Wang, Sixian
    Zhang, Xuelin
    Yang, Luwei
    Zhou, Yuan
    Wang, Junjie
    [J]. ENERGY, 2016, 103 : 182 - 191
  • [3] The thermodynamic effect of thermal energy storage on compressed air energy storage system
    Zhang, Yuan
    Yang, Ke
    Li, Xuemei
    Xu, Jianzhong
    [J]. RENEWABLE ENERGY, 2013, 50 : 227 - 235
  • [4] EFFICIENCY ASSESSMENT OF COMPRESSED AIR ENERGY STORAGE SYSTEM COUPLED WITH THERMAL ENERGY STORAGE UNIT: REVIEW
    Assegie, Mebratu Adamu
    Siram, Ojing
    Kalita, Pankaj
    Sahoo, Niranjan
    [J]. PROCEEDINGS OF ASME 2023 GAS TURBINE INDIA CONFERENCE, GTINDIA2023, 2023,
  • [5] Review and prospect of compressed air energy storage system
    Laijun CHEN
    Tianwen ZHENG
    Shengwei MEI
    Xiaodai XUE
    Binhui LIU
    Qiang LU
    [J]. Journal of Modern Power Systems and Clean Energy, 2016, 4 (04) : 529 - 541
  • [6] Review and prospect of compressed air energy storage system
    Chen, Laijun
    Zheng, Tianwen
    Mei, Shengwei
    Xue, Xiaodai
    Liu, Binhui
    Lu, Qiang
    [J]. JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2016, 4 (04) : 529 - 541
  • [7] Compressed air energy storage system
    Saruta, Hiroki
    Sato, Takashi
    Nakamichi, Ryo
    Toshima, Masatake
    Kubo, Yohei
    [J]. R and D: Research and Development Kobe Steel Engineering Reports, 2020, 70 (01): : 42 - 46
  • [8] Compressed Air Energy Storage as a Battery Energy Storage System for Various Application Domains: A Review
    Fajinmi, Olusola
    Munda, Josiah L.
    Hamam, Yskandar
    Popoola, Olawale
    [J]. ENERGIES, 2023, 16 (18)
  • [9] A trigeneration system based on compressed air and thermal energy storage
    Li, Yongliang
    Wang, Xiang
    Li, Dacheng
    Ding, Yulong
    [J]. APPLIED ENERGY, 2012, 99 : 316 - 323
  • [10] Adiabatic Compressed Air Energy Storage with packed bed thermal energy storage
    Barbour, Edward
    Mignard, Dimitri
    Ding, Yulong
    Li, Yongliang
    [J]. APPLIED ENERGY, 2015, 155 : 804 - 815