Progressive cross-level fusion network for RGB-D salient object detection

被引:1
|
作者
Li, Jianbao [1 ]
Pan, Chen [1 ]
Zheng, Yilin [1 ]
Zhang, Dongping [1 ]
机构
[1] China JiLiang Univ, Sch Informat Engn, Hangzhou, Peoples R China
关键词
Salient object detection; Progressive cross-level fusion; Self-modality attention refinement; Multi-scale spaces;
D O I
10.1016/j.jvcir.2024.104268
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Depth maps can provide supplementary information for salient object detection (SOD) and perform better in handling complex scenes. Most existing RGB-D methods only utilize deep cues at the same level, and few methods focus on the information linkage between cross-level features. In this study, we propose a Progressive Cross-level Fusion Network (PCF-Net). It ensures the cross-flow of cross-level features by gradually exploring deeper features, which promotes the interaction and fusion of information between different-level features. First, we designed a Cross-Level Guide Cross-Modal Fusion Module (CGCF) that utilizes the spatial information of upper-level features to suppress modal feature noise and to guide lower-level features for cross-modal feature fusion. Next, the proposed Semantic Enhancement Module (SEM) and Local Enhancement Module (LEM) are used to further introduce deeper features, enhance the high-level semantic information and lowlevel structural information of cross-modal features, and use self-modality attention refinement to improve the enhancement effect. Finally, the multi-scale aggregation decoder mines enhanced feature information in multi- scale spaces and effectively integrates cross-scale features. In this study, we conducted numerous experiments to demonstrate that the proposed PCF-Net outperforms 16 of the most advanced methods on six popular RGB-D SOD datasets.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Attention-aware Cross-modal Cross-level Fusion Network for RGB-D Salient Object Detection
    Chen, Hao
    Li, You-Fu
    Su, Dan
    2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 6821 - 6826
  • [2] RGB-D Salient Object Detection Based on Cross-Modal and Cross-Level Feature Fusion
    Peng, Yanbin
    Zhai, Zhinian
    Feng, Mingkun
    IEEE Access, 2024, 12 : 45134 - 45146
  • [3] RGB-D Salient Object Detection Based on Cross-Modal and Cross-Level Feature Fusion
    Peng, Yanbin
    Zhai, Zhinian
    Feng, Mingkun
    IEEE ACCESS, 2024, 12 : 45134 - 45146
  • [4] Cross-Modal Fusion and Progressive Decoding Network for RGB-D Salient Object Detection
    Hu, Xihang
    Sun, Fuming
    Sun, Jing
    Wang, Fasheng
    Li, Haojie
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (08) : 3067 - 3085
  • [5] Progressive multi-scale fusion network for RGB-D salient object detection
    Ren, Guangyu
    Xie, Yanchun
    Dai, Tianhong
    Stathaki, Tania
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2022, 223
  • [6] Adaptive fusion network for RGB-D salient object detection
    Chen, Tianyou
    Xiao, Jin
    Hu, Xiaoguang
    Zhang, Guofeng
    Wang, Shaojie
    NEUROCOMPUTING, 2023, 522 : 152 - 164
  • [7] Bifurcation Fusion Network for RGB-D Salient Object Detection
    Zhao, Zhi-Hua
    Chen, Li
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2022, 31 (12)
  • [8] Discriminative Cross-Modal Transfer Learning and Densely Cross-Level Feedback Fusion for RGB-D Salient Object Detection
    Chen, Hao
    Li, Youfu
    Su, Dan
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (11) : 4808 - 4820
  • [9] Three-stream RGB-D salient object detection network based on cross-level and cross-modal dual-attention fusion
    Meng, Lingbing
    Yuan, Mengya
    Shi, Xuehan
    Liu, Qingqing
    Cheng, Fei
    Li, Lingli
    IET IMAGE PROCESSING, 2023, 17 (11) : 3292 - 3308
  • [10] An adaptive guidance fusion network for RGB-D salient object detection
    Sun, Haodong
    Wang, Yu
    Ma, Xinpeng
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (02) : 1683 - 1693