An Analysis of a Commercial GNSS-R Soil Moisture Dataset

被引:0
|
作者
Al-Khaldi, Mohammad M. [1 ,2 ]
Johnson, Joel T. [1 ,2 ]
Horton, Dustin [1 ,2 ]
McKague, Darren S. [3 ]
Twigg, Dorina [4 ]
Russel, Anthony [4 ]
Policelli, Frederick S. [5 ]
Ouellette, Jeffrey D. [6 ]
Bindlish, Rajat [5 ]
Park, Jeonghwan [5 ]
机构
[1] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA
[2] Ohio State Univ, ElectroSci Lab, Columbus, OH 43210 USA
[3] Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Space Phys Res Lab, Ann Arbor, MI 48109 USA
[5] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[6] US Naval Res Lab, Washington, DC 20375 USA
关键词
Soil moisture; Surface roughness; Rough surfaces; Receivers; Reflectivity; Scattering; Surface treatment; Bistatic radar systems; CubeSats; global navigation satellite systems reflectometry (GNSS-R); rough surface scattering; SmallSats; soil moisture; SIGNALS; PREDICTABILITY; REFLECTIONS; SCATTERING; DYNAMICS; SYSTEM; OCEAN; SMOS;
D O I
10.1109/JSTARS.2024.3449773
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An analysis of a Level-2 (L2) soil moisture record extending from 1 May 2021 to 1 January 2024 derived from Spire, Inc.'s Global Navigation Satellite System Reflectometry (GNSS-R) observatories is presented. The product's sensitivity to large scale soil moisture variability is demonstrated using an example of a 2022 flood in Pakistan. Product consistency among the constellation's multiple satellites is also investigated; no clear evidence of intersatellite biases is observed. Further comparisons are performed with soil moisture datasets from the Soil Moisture Active Passive (SMAP) and Cyclone Global Navigation Satellite System (CYGNSS) missions, from the European Center for Medium-Range Weather Forecasts Reanalysis v5 (ERA5), and from in situ International Soil Moisture Network (ISMN) sites. Although an overall product correlation with SMAP soil moisture of approximately 85$\%$ is determined, per-pixel correlations vary significantly and per-pixel root-mean-square errors (RMSE) can range from 0.02 to 0.09 (cm(3)/cm(3)) depending on land class. The importance of applying the product's quality flags is also demonstrated. The influence of other calibration effects and inland water body contamination on these results is also discussed.
引用
收藏
页码:15480 / 15493
页数:14
相关论文
共 50 条
  • [41] HIGH RESOLUTION SOIL MOISTURE RETRIEVAL USING OPTICAL AND GNSS-R AIRBORNE DATA
    Castellvi, J.
    Camps, A.
    Corbera, J.
    Alamus, R.
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 6209 - 6210
  • [42] INVESTIGATING THE EFFECTS OF METEOROLOGICAL DATA RAINFALL AND TEMPERATURE ON GNSS-R SOIL MOISTURE INVERSION
    Shi, Yajie
    Liang, Yueji
    Ren, Chao
    Lai, Jianmin
    Ding, Qin
    Hu, Xinmiao
    2021 IEEE SPECIALIST MEETING ON REFLECTOMETRY USING GNSS AND OTHER SIGNALS OF OPPORTUNITY 2021 (GNSS+R 2021), 2021, : 97 - 100
  • [43] Soil Moisture Retrieval Using GNSS-R Techniques: Experimental Results Over a Bare Soil Field
    Rodriguez-Alvarez, Nereida
    Bosch-Lluis, Xavier
    Camps, Adriano
    Vall-llossera, Merce
    Valencia, Enric
    Fernando Marchan-Hernandez, Juan
    Ramos-Perez, Isaac
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (11): : 3616 - 3624
  • [44] Airborne GNSS-R Polarimetric Multiincidence Data Analysis for Surface Soil Moisture Estimation Over an Agricultural Site
    Zribi, Mehrez
    Dehaye, Vincent
    Dassas, Karin
    Fanise, Pascal
    Le Page, Michel
    Laluet, Pierre
    Boone, Aaron
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 8432 - 8441
  • [45] IS SOIL SALINITY DETECTABLE BY GNSS-R/IR?
    Wu, Xuerui
    Xia, Junming
    Jin, Shuanggen
    Bai, Weihua
    Dong, Zhounan
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 6227 - 6230
  • [46] In-Situ GNSS-R and Radiometer Fusion Soil Moisture Retrieval Model Based on LSTM
    Zhang, Tianlong
    Yang, Lei
    Nan, Hongtao
    Yin, Cong
    Sun, Bo
    Yang, Dongkai
    Hong, Xuebao
    Lopez-Baeza, Ernesto
    REMOTE SENSING, 2023, 15 (10)
  • [47] An improved soil moisture retrieval method considering azimuth angle changes for spaceborne GNSS-R
    Ye, Yiling
    Liu, Lilong
    Chen, Fade
    Huang, Liangke
    Advances in Space Research, 2025, 75 (01) : 178 - 189
  • [48] SENSITIVITY TO SOIL MOISTURE AND OBSERVATION GEOMETRY OF SPACEBORNE GNSS-R DELAY-DOPPLER MAPS
    Park, H.
    Camps, A.
    Castellvi, J.
    Vall-llossera, M.
    Portal, G.
    Rossato, L.
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 8358 - 8361
  • [49] GRASS: AN EXPERIMENT ON THE CAPABILITY OF AIRBORNE GNSS-R SENSORS IN SENSING SOIL MOISTURE AND VEGETATION BIOMASS
    Paloscia, S.
    Santi, E.
    Fontanelli, G.
    Pettinato, S.
    Egido, A.
    Caparrini, M.
    Motte, E.
    Guerriero, L.
    Pierdicca, V.
    Floury, N.
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 2110 - 2113
  • [50] Ground-based GNSS-R soil moisture retrieval based on correlation power correction
    Hong X.
    Zhang B.
    Ruan H.
    Han M.
    Yang D.
    Song S.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2021, 47 (08): : 1558 - 1564