An Analysis of a Commercial GNSS-R Soil Moisture Dataset

被引:0
|
作者
Al-Khaldi, Mohammad M. [1 ,2 ]
Johnson, Joel T. [1 ,2 ]
Horton, Dustin [1 ,2 ]
McKague, Darren S. [3 ]
Twigg, Dorina [4 ]
Russel, Anthony [4 ]
Policelli, Frederick S. [5 ]
Ouellette, Jeffrey D. [6 ]
Bindlish, Rajat [5 ]
Park, Jeonghwan [5 ]
机构
[1] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA
[2] Ohio State Univ, ElectroSci Lab, Columbus, OH 43210 USA
[3] Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Space Phys Res Lab, Ann Arbor, MI 48109 USA
[5] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[6] US Naval Res Lab, Washington, DC 20375 USA
关键词
Soil moisture; Surface roughness; Rough surfaces; Receivers; Reflectivity; Scattering; Surface treatment; Bistatic radar systems; CubeSats; global navigation satellite systems reflectometry (GNSS-R); rough surface scattering; SmallSats; soil moisture; SIGNALS; PREDICTABILITY; REFLECTIONS; SCATTERING; DYNAMICS; SYSTEM; OCEAN; SMOS;
D O I
10.1109/JSTARS.2024.3449773
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An analysis of a Level-2 (L2) soil moisture record extending from 1 May 2021 to 1 January 2024 derived from Spire, Inc.'s Global Navigation Satellite System Reflectometry (GNSS-R) observatories is presented. The product's sensitivity to large scale soil moisture variability is demonstrated using an example of a 2022 flood in Pakistan. Product consistency among the constellation's multiple satellites is also investigated; no clear evidence of intersatellite biases is observed. Further comparisons are performed with soil moisture datasets from the Soil Moisture Active Passive (SMAP) and Cyclone Global Navigation Satellite System (CYGNSS) missions, from the European Center for Medium-Range Weather Forecasts Reanalysis v5 (ERA5), and from in situ International Soil Moisture Network (ISMN) sites. Although an overall product correlation with SMAP soil moisture of approximately 85$\%$ is determined, per-pixel correlations vary significantly and per-pixel root-mean-square errors (RMSE) can range from 0.02 to 0.09 (cm(3)/cm(3)) depending on land class. The importance of applying the product's quality flags is also demonstrated. The influence of other calibration effects and inland water body contamination on these results is also discussed.
引用
下载
收藏
页码:15480 / 15493
页数:14
相关论文
共 50 条
  • [31] Spaceborne GNSS-R for retrieving soil moisture based on the correction of stage model
    Tao T.
    Li J.
    Zhu Y.
    Wang J.
    Chen H.
    Shi M.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2022, 51 (09): : 1942 - 1950
  • [32] GNSS-R TIME-SERIES SOIL MOISTURE RETRIEVALS FROM VEGETATED SURFACES
    Al-Khaldi, M.
    Johnson, J. T.
    O'Brien, A.
    Mattia, F.
    Balenzano, A.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2035 - 2038
  • [33] Machine learning-based global soil moisture estimation using GNSS-R
    Senyurek, Volkan
    Lei, Fangni
    Gurbuz, Ali C.
    Kurum, Mehmet
    Moorhead, Robert
    SOUTHEASTCON 2022, 2022, : 434 - 435
  • [34] An Improved Method for Water Body Removal in Spaceborne GNSS-R Soil Moisture Retrieval
    Yang, Wentao
    Guo, Fei
    Zhang, Xiaohong
    Zhu, Yifan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [35] Initial results of China's GNSS-R airborne campaign: soil moisture retrievals
    Wan, Wei
    Bai, Weihua
    Zhao, Limin
    Long, Di
    Sun, Yueqiang
    Meng, Xiangguang
    Chen, Hua
    Cui, Xiai
    Hong, Yang
    SCIENCE BULLETIN, 2015, 60 (10) : 964 - 971
  • [36] INCIDENCE ANGLE NORMALIZATION OF SPACEBORNE GNSS-R SURFACE REFLECTIVITY FOR SOIL MOISTURE RETRIEVAL
    Setti, Paulo T., Jr.
    Tabibi, Sajad
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 510 - 513
  • [37] DEEP GENERATIVE REGRESSION MODELS FOR SOIL MOISTURE RETRIEVAL FROM GNSS-R OBSERVATIONS
    Tsagkatakis, G.
    Melebari, A.
    Akbar, R.
    Campbell, J. D.
    Hodges, E.
    Moghaddam, M.
    2023 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS, ICEAA, 2023, : 291 - 291
  • [38] Dual-Polarization GNSS-R Interference Pattern Technique for Soil Moisture Mapping
    Alonso Arroyo, Alberto
    Camps, Adriano
    Aguasca, Albert
    Forte, Giuseppe F.
    Monerris, Alessandra
    Ruediger, Christoph
    Walker, Jeffrey P.
    Park, Hyuk
    Pascual, Daniel
    Onrubia, Raul
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (05) : 1533 - 1544
  • [39] Single-Pass Soil Moisture Retrievals Using GNSS-R: Lessons Learned
    Camps, Adriano
    Park, Hyuk
    Castellvi, Jordi
    Corbera, Jordi
    Ascaso, Emili
    REMOTE SENSING, 2020, 12 (12)
  • [40] AN AIRBORNE GNSS-R FIELD EXPERIMENT OVER A VINEYARD FOR SOIL MOISTURE ESTIMATION AND MONITORING
    Alonso-Arroyo, A.
    Camps, A.
    Sanchez, N.
    Pablos, M.
    Gonzalez-Zamora, A.
    Martinez-Fernandez, J.
    Vall-llosera, M.
    Pascual, D.
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 4761 - 4764