MixCDNet: A Lightweight Change Detection Network Mixing Features Across CNN and Transformer

被引:0
|
作者
Wang, Linlin [1 ]
Zhang, Junping [1 ]
Bruzzone, Lorenzo [2 ]
机构
[1] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin 150001, Peoples R China
[2] Univ Trento, Dept Informat Engn & Comp Sci, Trento, Italy
基金
中国国家自然科学基金;
关键词
Feature extraction; Transformers; Data mining; Convolution; Task analysis; Convolutional neural networks; Computational modeling; Change detection (CD); convolutional neural networks (CNNs); global-local information; lightweight CD network; mixing features block (MFB); remote sensing;
D O I
10.1109/TGRS.2024.3438228
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Convolutional neural networks (CNNs) have performed notably in change detection (CD) tasks due to their superior learning and automatic feature extraction capabilities. However, they suffer from the limited receptive field and the weak modeling of long-range dependencies. Vision transformers (ViTs) excel in modeling long-range contexts and have been recently introduced in CD. Some works have combined CNN and transformers to obtain local-global information. However, these works do not fully consider the guidance and interactions from both local features (LFs) and global features (GFs). Most importantly, most of them involve a very large number of parameters and computational costs. To address these issues, in this article, we propose a lightweight CD network that mixes features across CNN and transformer (MixCDNet). We use EfficientNet as the backbone and design a novel mixing features block (MFB). First, we employ hierarchical feature extraction blocks, where local feature blocks (LFBs) and global feature blocks (GFBs) are utilized for extracting information at different spatial resolutions. Second, we propose to exploit bidirectional interactions across LFBs and GFBs branches to provide complementary clues while capturing LFs and GFs. Moreover, a skip-connection and fusion separable self-attention layer (SFSSL) is designed to obtain GFs with low complexity. Comprehensive experiments are conducted on three high-resolution remote sensing (HRRS) images CD datasets: LEVIR-CD, WHU-CD, and CDD. The results show the effectiveness of the proposed MixCDNet in improving the performance of existing CD methods with fewer parameters (0.32 M) and lower computation costs (1.59G FLOPs).
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Lightweight SAR Ship Detection Network Based on Transformer and Feature Enhancement
    Zhou, Shichuang
    Zhang, Ming
    Wu, Liang
    Yu, Dahua
    Li, Jianjun
    Fan, Fei
    Zhang, Liyun
    Liu, Yang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 4845 - 4858
  • [32] CloudViT: A Lightweight Vision Transformer Network for Remote Sensing Cloud Detection
    Zhang, Bin
    Zhang, Yongjun
    Li, Yansheng
    Wan, Yi
    Yao, Yongxiang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [33] CloudViT: A Lightweight Vision Transformer Network for Remote Sensing Cloud Detection
    Zhang, Bin
    Zhang, Yongjun
    Li, Yansheng
    Wan, Yi
    Yao, Yongxiang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [34] A Lightweight Collective-attention Network for Change Detection
    Feng, Yuchao
    Shao, Yanyan
    Xu, Honghui
    Xu, Jinshan
    Zheng, Jianwei
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 8195 - 8203
  • [35] CTMNet: Enhanced Open-Pit Mine Extraction and Change Detection With a Hybrid CNN-Transformer Multitask Network
    Xing, Jianghe
    Zhang, Jue
    Li, Jun
    Gao, Yongsheng
    Du, Shouhang
    Zhang, Chengye
    Wang, Yanheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [36] Asymmetric Cross-Attention Hierarchical Network Based on CNN and Transformer for Bitemporal Remote Sensing Images Change Detection
    Zhang, Xiaofeng
    Cheng, Shuli
    Wang, Liejun
    Li, Haojin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [37] SMNet: Symmetric Multi-Task Network for Semantic Change Detection in Remote Sensing Images Based on CNN and Transformer
    Niu, Yiting
    Guo, Haitao
    Lu, Jun
    Ding, Lei
    Yu, Donghang
    REMOTE SENSING, 2023, 15 (04)
  • [38] A TRANSFORMER-BASED SIAMESE NETWORK FOR CHANGE DETECTION
    Bandara, Wele Gedara Chaminda
    Patel, Vishal M.
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 207 - 210
  • [39] Remote sensing image change detection based on CNN-Transformer structure
    Pan, Mengyang
    Yang, Hang
    Fan, Xianghui
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2024, 39 (10) : 1361 - 1379
  • [40] CNN-TransNet: A Hybrid CNN-Transformer Network With Differential Feature Enhancement for Cloud Detection
    Ma, Nan
    Sun, Lin
    He, Yawen
    Zhou, Chenghu
    Dong, Chuanxiang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20