MixCDNet: A Lightweight Change Detection Network Mixing Features Across CNN and Transformer

被引:0
|
作者
Wang, Linlin [1 ]
Zhang, Junping [1 ]
Bruzzone, Lorenzo [2 ]
机构
[1] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin 150001, Peoples R China
[2] Univ Trento, Dept Informat Engn & Comp Sci, Trento, Italy
基金
中国国家自然科学基金;
关键词
Feature extraction; Transformers; Data mining; Convolution; Task analysis; Convolutional neural networks; Computational modeling; Change detection (CD); convolutional neural networks (CNNs); global-local information; lightweight CD network; mixing features block (MFB); remote sensing;
D O I
10.1109/TGRS.2024.3438228
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Convolutional neural networks (CNNs) have performed notably in change detection (CD) tasks due to their superior learning and automatic feature extraction capabilities. However, they suffer from the limited receptive field and the weak modeling of long-range dependencies. Vision transformers (ViTs) excel in modeling long-range contexts and have been recently introduced in CD. Some works have combined CNN and transformers to obtain local-global information. However, these works do not fully consider the guidance and interactions from both local features (LFs) and global features (GFs). Most importantly, most of them involve a very large number of parameters and computational costs. To address these issues, in this article, we propose a lightweight CD network that mixes features across CNN and transformer (MixCDNet). We use EfficientNet as the backbone and design a novel mixing features block (MFB). First, we employ hierarchical feature extraction blocks, where local feature blocks (LFBs) and global feature blocks (GFBs) are utilized for extracting information at different spatial resolutions. Second, we propose to exploit bidirectional interactions across LFBs and GFBs branches to provide complementary clues while capturing LFs and GFs. Moreover, a skip-connection and fusion separable self-attention layer (SFSSL) is designed to obtain GFs with low complexity. Comprehensive experiments are conducted on three high-resolution remote sensing (HRRS) images CD datasets: LEVIR-CD, WHU-CD, and CDD. The results show the effectiveness of the proposed MixCDNet in improving the performance of existing CD methods with fewer parameters (0.32 M) and lower computation costs (1.59G FLOPs).
引用
收藏
页数:15
相关论文
共 50 条
  • [21] A hierarchical CNN-Transformer model for network intrusion detection
    Luo, Sijie
    Zhao, Zhiheng
    Hu, Qiyuan
    Liu, Yang
    2ND INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, MODELLING, AND INTELLIGENT COMPUTING (CAMMIC 2022), 2022, 12259
  • [22] CSMViT: A Lightweight Transformer and CNN fusion Network for Lymph Node Pathological Images Diagnosis
    Jiang, Peihe
    Xu, Yukun
    Wang, Chunni
    Zhang, Wei
    Lu, Ning
    IEEE ACCESS, 2024, 12 : 155365 - 155378
  • [23] Transformer with difference convolutional network for lightweight universal boundary detection
    Li, Mingchun
    Liu, Yang
    Chen, Dali
    Chen, Liangsheng
    Liu, Shixin
    PLOS ONE, 2024, 19 (04):
  • [24] Multiscale Fusion CNN-Transformer Network for High-Resolution Remote Sensing Image Change Detection
    Jiang, Ming
    Chen, Yimin
    Dong, Zhe
    Liu, Xiaoping
    Zhang, Xinchang
    Zhang, Honghui
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 5280 - 5293
  • [25] CTST: CNN and Transformer-Based Spatio-Temporally Synchronized Network for Remote Sensing Change Detection
    Wang, Shuo
    Wu, Wenbin
    Zheng, Zhiqing
    Li, Jinjiang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 16272 - 16288
  • [26] A CNN-Transformer Network Combining CBAM for Change Detection in High-Resolution Remote Sensing Images
    Yin, Mengmeng
    Chen, Zhibo
    Zhang, Chengjian
    REMOTE SENSING, 2023, 15 (09)
  • [27] Fusion of transformer and ML-CNN-BiLSTM for network intrusion detection
    Xiang, Zelin
    Li, Xuwei
    EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2023, 2023 (01)
  • [28] MMViT-Seg: A lightweight transformer and CNN fusion network for COVID-19 segmentation
    Yang, Yuan
    Zhang, Lin
    Ren, Lei
    Wang, Xiaohan
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 230
  • [29] RingMo-Lite: A Remote Sensing Lightweight Network With CNN-Transformer Hybrid Framework
    Wang, Yuelei
    Zhang, Ting
    Zhao, Liangjin
    Hu, Lin
    Wang, Zhechao
    Niu, Ziqing
    Cheng, Peirui
    Chen, Kaiqiang
    Zeng, Xuan
    Wang, Zhirui
    Wang, Hongqi
    Sun, Xian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 20
  • [30] Pairwise CNN-Transformer Features for Human-Object Interaction Detection
    Quan, Hutuo
    Lai, Huicheng
    Gao, Guxue
    Ma, Jun
    Li, Junkai
    Chen, Dongji
    ENTROPY, 2024, 26 (03)