Entropy solutions to the fully nonlocal diffusion equations

被引:0
|
作者
Li, Ying [1 ]
Zhang, Chao [2 ,3 ]
机构
[1] Harbin Inst Technol, Sch Math, Harbin, Peoples R China
[2] Harbin Inst Technol, Sch Math, Harbin 150001, Peoples R China
[3] Harbin Inst Technol, Inst Adv Study Math, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
entropy solution; existence; fractional partial differential equations; L-1-data; nonlocal diffusion; FRACTIONAL DIFFUSION; WEAK SOLUTIONS; INTEGRODIFFERENTIAL EQUATIONS; SUBDIFFUSION EQUATIONS; PARABOLIC PROBLEM; EXISTENCE; UNIQUENESS; LAPLACIAN; BEHAVIOR; GUIDE;
D O I
10.1002/mana.202400130
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the fully nonlocal diffusion equations with nonnegative L-1-data. Based on the approximation and energy methods, we prove the existence and uniqueness of nonnegative entropy solutions for such problems. In particular, our results are valid for the time-space fractional Laplacian equations.
引用
收藏
页码:4003 / 4030
页数:28
相关论文
共 50 条
  • [31] Nonlocal diffusion equations in Carnot groups
    Isolda E. Cardoso
    Raúl E. Vidal
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 2159 - 2180
  • [32] Nonlocal approximation of nonlinear diffusion equations
    Carrillo, Jose Antonio
    Esposito, Antonio
    Wu, Jeremy Sheung-Him
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (04)
  • [33] Asymptotic behavior for nonlocal diffusion equations
    Chasseigne, Emmanuel
    Chaves, Manuela
    Rossi, Julio D.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 86 (03): : 271 - 291
  • [34] 2-DIMENSIONAL FULLY ADAPTIVE SOLUTIONS OF REACTION-DIFFUSION EQUATIONS
    LANG, J
    APPLIED NUMERICAL MATHEMATICS, 1995, 18 (1-3) : 223 - 240
  • [35] Some effects of nonlocal diffusion on the solutions of Fisher-KPP equations in disconnected domains
    Alexis Léculier
    Jean-Michel Roquejoffre
    Calculus of Variations and Partial Differential Equations, 2023, 62
  • [36] On stationary and radially symmetric solutions to some drift-diffusion equations with nonlocal term
    Stanczy, R.
    APPLICABLE ANALYSIS, 2016, 95 (01) : 97 - 104
  • [37] Travelling Wavefronts in Nonlocal Diffusion Equations with Nonlocal Delay Effects
    Guo, Shangjiang
    Zimmer, Johannes
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (02) : 919 - 943
  • [38] EQUIVALENCE OF GRADIENT FLOWS AND ENTROPY SOLUTIONS FOR SINGULAR NONLOCAL INTERACTION EQUATIONS IN 1D
    Bonaschi, Giovanni A.
    Carrillo, Jose A.
    Di Francesco, Marco
    Peletier, Mark A.
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2015, 21 (02) : 414 - 441
  • [39] Quasi-periodic solutions for the incompressible Navier-Stokes equations with nonlocal diffusion
    Ji, Shuguan
    Li, Yanshuo
    ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (12): : 7182 - 7194
  • [40] Wave-like Solutions for Nonlocal Reaction-diffusion Equations: a Toy Model
    Nadin, G.
    Rossi, L.
    Ryzhik, L.
    Perthame, B.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2013, 8 (03) : 33 - 41