Entropy solutions to the fully nonlocal diffusion equations

被引:0
|
作者
Li, Ying [1 ]
Zhang, Chao [2 ,3 ]
机构
[1] Harbin Inst Technol, Sch Math, Harbin, Peoples R China
[2] Harbin Inst Technol, Sch Math, Harbin 150001, Peoples R China
[3] Harbin Inst Technol, Inst Adv Study Math, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
entropy solution; existence; fractional partial differential equations; L-1-data; nonlocal diffusion; FRACTIONAL DIFFUSION; WEAK SOLUTIONS; INTEGRODIFFERENTIAL EQUATIONS; SUBDIFFUSION EQUATIONS; PARABOLIC PROBLEM; EXISTENCE; UNIQUENESS; LAPLACIAN; BEHAVIOR; GUIDE;
D O I
10.1002/mana.202400130
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the fully nonlocal diffusion equations with nonnegative L-1-data. Based on the approximation and energy methods, we prove the existence and uniqueness of nonnegative entropy solutions for such problems. In particular, our results are valid for the time-space fractional Laplacian equations.
引用
收藏
页码:4003 / 4030
页数:28
相关论文
共 50 条