Nonlinear Fay-Herriot Models for Small Area Estimation Using Random Weight Neural Networks

被引:0
|
作者
Parker, Paul A. [1 ]
机构
[1] Univ Calif Santa Cruz, Dept Stat, 1156 High St, Santa Cruz, CA 95064 USA
基金
美国国家科学基金会;
关键词
American Community Survey; Bayesian hierarchical model; household income; HORSESHOE;
D O I
10.1177/0282423X241244671
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Small area estimation models are critical for dissemination and understanding of important population characteristics within sub-domains that often have limited sample size. The classic Fay-Herriot model is perhaps the most widely used approach to generate such estimates. However, a limiting assumption of this approach is that the latent true population quantity has a linear relationship with the given covariates. Through the use of random weight neural networks, we develop a Bayesian hierarchical extension of this framework that allows for estimation of nonlinear relationships between the true population quantity and the covariates. We illustrate our approach through an empirical simulation study as well as an analysis of median household income for census tracts in the state of California.
引用
收藏
页码:317 / 332
页数:16
相关论文
共 50 条
  • [1] Multivariate Fay-Herriot models for small area estimation
    Benavent, Roberto
    Morales, Domingo
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 94 : 372 - 390
  • [2] Small area estimation with spatio-temporal Fay-Herriot models
    Marhuenda, Yolanda
    Molina, Isabel
    Morales, Domingo
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 58 : 308 - 325
  • [3] Spatial Fay-Herriot models for small area estimation with functional covariates
    Porter, Aaron T.
    Holan, Scott H.
    Wikle, Christopher K.
    Cressie, Noel
    SPATIAL STATISTICS, 2014, 10 : 27 - 42
  • [4] msae: An R Package of Multivariate Fay-Herriot Models for Small Area Estimation
    Permatasari, Novia
    Ubaidillah, Azka
    R JOURNAL, 2021, 13 (02): : 111 - 122
  • [5] Parametric transformed Fay-Herriot model for small area estimation
    Sugasawa, Shonosuke
    Kubokawa, Tatsuya
    JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 139 : 295 - 311
  • [6] Small area estimation under Fay-Herriot models with non-parametric estimation of heteroscedasticity
    Gonzalez-Manteiga, W.
    Lombardia, M. J.
    Molina, I.
    Morales, D.
    Santamaria, L.
    STATISTICAL MODELLING, 2010, 10 (02) : 215 - 239
  • [7] Small area estimation under a Fay-Herriot model with preliminary testing for the presence of random area effects
    Molina, Isabel
    Rao, J. N. K.
    Datta, Gauri Sankar
    SURVEY METHODOLOGY, 2015, 41 (01) : 1 - 19
  • [8] SMALL AREA ESTIMATION VIA MULTIVARIATE FAY-HERRIOT MODELS WITH LATENT SPATIAL DEPENDENCE
    Porter, Aaron T.
    Wikle, Christopher K.
    Holan, Scott H.
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2015, 57 (01) : 15 - 29
  • [9] Small area estimation using Fay-Herriot area level model with sampling variance smoothing and modeling
    You, Yong
    SURVEY METHODOLOGY, 2021, 47 (02) : 361 - 370
  • [10] Small area estimation under a measurement error bivariate Fay-Herriot model
    Burgard, Jan Pablo
    Esteban, Maria Dolores
    Morales, Domingo
    Perez, Agustin
    STATISTICAL METHODS AND APPLICATIONS, 2021, 30 (01): : 79 - 108