Nonlinear Fay-Herriot Models for Small Area Estimation Using Random Weight Neural Networks

被引:0
|
作者
Parker, Paul A. [1 ]
机构
[1] Univ Calif Santa Cruz, Dept Stat, 1156 High St, Santa Cruz, CA 95064 USA
基金
美国国家科学基金会;
关键词
American Community Survey; Bayesian hierarchical model; household income; HORSESHOE;
D O I
10.1177/0282423X241244671
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Small area estimation models are critical for dissemination and understanding of important population characteristics within sub-domains that often have limited sample size. The classic Fay-Herriot model is perhaps the most widely used approach to generate such estimates. However, a limiting assumption of this approach is that the latent true population quantity has a linear relationship with the given covariates. Through the use of random weight neural networks, we develop a Bayesian hierarchical extension of this framework that allows for estimation of nonlinear relationships between the true population quantity and the covariates. We illustrate our approach through an empirical simulation study as well as an analysis of median household income for census tracts in the state of California.
引用
收藏
页码:317 / 332
页数:16
相关论文
共 50 条
  • [41] Adaptive estimation using multiple models and neural networks
    Vincent, TL
    Galarza, C
    Khargonekar, PP
    ARTIFICIAL INTELLIGENCE IN REAL-TIME CONTROL 1998, 1999, : 149 - 154
  • [42] Application of Neural Networks to External Parameter Estimation for Nonlinear Vehicle Models
    Gräber T.
    Schäfer M.
    Unterreiner M.
    Schramm D.
    SAE International Journal of Connected and Automated Vehicles, 2021, 4 (03): : 297 - 312
  • [43] Parameter estimation in nonlinear systems using Hopfield neural networks
    Hu, ZN
    Balakrishnan, SN
    JOURNAL OF AIRCRAFT, 2005, 42 (01): : 41 - 53
  • [44] Small area estimation using reduced rank regression models
    von Rosen, Tatjana
    von Rosen, Dietrich
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (13) : 3286 - 3297
  • [45] Small area estimation for unemployment using latent Markov models
    Bertarelli, Gaia
    Ranalli, M. Giovanna
    Bartolucci, Francesco
    D'Alo, Michele
    Solari, Fabrizio
    SURVEY METHODOLOGY, 2018, 44 (02) : 167 - 192
  • [46] Small area estimation using unmatched sampling and linking models
    You, Y
    Rao, JNK
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2002, 30 (01): : 3 - 15
  • [47] Combining surveys in small area estimation using area-level models
    Franco, Carolina
    Maitra, Poulami
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2023, 15 (06)
  • [48] Nonlinear adaptive control using neural networks and multiple models
    Chen, LJ
    Narendra, KS
    AUTOMATICA, 2001, 37 (08) : 1245 - 1255
  • [49] Nonlinear adaptive control using neural networks and multiple models
    Chen, LJ
    Narendra, KS
    PROCEEDINGS OF THE 2000 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2000, : 4199 - 4203
  • [50] THE ESTIMATION OF ERRORS OF AREA MODELS DESCRIBED BY THE SHAPE FUNCTIONS BY THE MEANS OF NEURAL NETWORKS
    Mrowczynska, Maria
    ENVIRONMENT, TECHNOLOGY, RESOURCES, PROCEEDINGS, 2007, : 219 - 224