Parameter estimation from an Ornstein-Uhlenbeck process with measurement noise

被引:0
|
作者
Carter, Simon [1 ]
Mujica-Parodi, Lilianne R. [2 ,3 ,4 ]
Strey, Helmut H. [2 ,3 ]
机构
[1] SUNY Stony Brook, Appl Math & Laufer Ctr Phys & Quantitat Biol, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Biomed Engn Dept, Stony Brook, NY 11794 USA
[3] SUNY Stony Brook, Laufer Ctr Phys & Quantitat Biol, Stony Brook, NY 11794 USA
[4] Santa Fe Inst, Santa Fe, NM 87501 USA
基金
美国国家科学基金会;
关键词
MODEL;
D O I
10.1103/PhysRevE.110.044112
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the impact of noise on parameter fitting for an Ornstein-Uhlenbeck process, focusing on the effects of multiplicative and thermal noise on the accuracy of signal separation. To address these issues, we propose algorithms and methods that can effectively distinguish between thermal and multiplicative noise and improve the precision of parameter estimation for optimal data analysis. Specifically, we explore the impact of both multiplicative and thermal noise on the obfuscation of the actual signal and propose methods to resolve them. First, we present an algorithm that can effectively separate thermal noise with comparable performance to Hamilton Monte Carlo (HMC) methods, but with significantly improved speed. We then analyze multiplicative noise and demonstrate that HMC is insufficient for isolating thermal and multiplicative noise. However, we show that with additional knowledge of the ratio between thermal and multiplicative noise, we can accurately distinguish between the two types of noise when provided with a sufficiently large sampling rate or an amplitude of multiplicative noise that is smaller than the thermal noise. Thus, we demonstrate the mechanism underlying an otherwise counterintuitive phenomenon: when multiplicative noise dominates the noise spectrum, one can successfully estimate the parameters for such systems after adding additional white noise to shift the noise balance.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Asymptotic properties for the parameter estimation in Ornstein-Uhlenbeck process with discrete observations
    Jiang, Hui
    Liu, Hui
    Zhou, Youzhou
    ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (02): : 3192 - 3229
  • [22] Drift parameter estimation for fractional Ornstein-Uhlenbeck process of the second kind
    Azmoodeh, Ehsan
    Morlanes, Jose Igor
    STATISTICS, 2015, 49 (01) : 1 - 18
  • [23] Parameter estimation for Ornstein-Uhlenbeck processes driven by fractional Levy process
    Shen, Guangjun
    Li, Yunmeng
    Gao, Zhenlong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [24] Parameter estimation of the fractional Ornstein-Uhlenbeck process based on quadratic variation
    Janczura, Joanna
    Magdziarz, Marcin
    Metzler, Ralf
    CHAOS, 2023, 33 (10)
  • [25] Least squares estimation for the Ornstein-Uhlenbeck process with small Hermite noise
    Araya, Hector
    Torres, Soledad
    Tudor, Ciprian A.
    STATISTICAL PAPERS, 2024, 65 (07) : 4745 - 4766
  • [26] Bayesian Estimation of the Skew Ornstein-Uhlenbeck Process
    Bai, Yizhou
    Wang, Yongjin
    Zhang, Haoyan
    Zhuo, Xiaoyang
    COMPUTATIONAL ECONOMICS, 2022, 60 (02) : 479 - 527
  • [27] Bayesian Estimation of the Skew Ornstein-Uhlenbeck Process
    Yizhou Bai
    Yongjin Wang
    Haoyan Zhang
    Xiaoyang Zhuo
    Computational Economics, 2022, 60 : 479 - 527
  • [28] Drift parameter estimation for infinite-dimensional fractional Ornstein-Uhlenbeck process
    Maslowski, Bohdan
    Tudor, Ciprian A.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (07): : 880 - 901
  • [29] Parameter Estimation for a Bidimensional Partially Observed Ornstein-Uhlenbeck Process with Biological Application
    Favetto, Benjamin
    Samson, Adeline
    SCANDINAVIAN JOURNAL OF STATISTICS, 2010, 37 (02) : 200 - 220
  • [30] Minimum distance parameter estimation for Ornstein-Uhlenbeck processes driven by Levy process
    Diop, Aliou
    Yode, Armel Fabrice
    STATISTICS & PROBABILITY LETTERS, 2010, 80 (02) : 122 - 127