Drift parameter estimation for infinite-dimensional fractional Ornstein-Uhlenbeck process

被引:12
|
作者
Maslowski, Bohdan [1 ]
Tudor, Ciprian A. [2 ,3 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Prague 18675 8, Czech Republic
[2] Univ Lille 1, Lab Paul Painleve, F-59655 Villeneuve Dascq, France
[3] Acad Econ Studies, Dept Math CCMAFA, Bucharest, Romania
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2013年 / 137卷 / 07期
关键词
Fractional Brownian motion; Parameter estimation; Stochastic evolution equations; Malliavin calculus; Multiple Wiener-Ito integrals; Strong consistency; Asymptotic normality; ASYMPTOTIC PROPERTIES; INTEGRALS;
D O I
10.1016/j.bulsci.2013.04.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the least squares estimator for the drift parameter of an infinite-dimensional fractional Ornstein-Uhlenbeck process with Hurst parameter H >= 1/2 This estimator can be expressed in terms of a divergence integral with respect to the fractional Brownian motion. Using some recently developed criteria based on Malliavin calculus and Wiener-Ito chaos expansion, we prove the strong consistency and the asymptotic normality of the estimator. (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:880 / 901
页数:22
相关论文
共 50 条