N-soliton solutions, Backlund transformation and Lax Pair for a generalized variable-coefficient cylindrical Kadomtsev-Petviashvili equation

被引:16
|
作者
Lan, Zhong-Zhou [1 ]
机构
[1] Inner Mongolia Univ Finance & Econ, Sch Comp Informat Management, Hohhot 010070, Peoples R China
基金
中国国家自然科学基金;
关键词
A generalized variable-coefficient cylindrical; Kadomtsev-Petviashvili equation; Bell polynomials; Soliton solutions; Backlund transformation; Lax pair; SYMBOLIC COMPUTATION; MODEL;
D O I
10.1016/j.aml.2024.109239
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate a generalized variable-coefficient cylindrical Kadomtsev-Petviashvili equation, which characterizes the water waves propagation in the fluid dynamics. Via the generalized Laurent series truncated at the constant-level term, an auto-Backlund transformation is derived. We establish the bilinear form through the utilization of the Bell polynomials. Based on the Hirota method, we construct the N-soliton solutions. We derive the bilinear Backlund transformation and Lax pair by virtue of the Hirota bilinear operators' exchange formulae and symbolic computation.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Interaction solutions of a variable-coefficient Kadomtsev-Petviashvili equation with self-consistent sources
    Yuan, Na
    Liu, Jian-Guo
    Seadawy, Aly R.
    Khater, Mostafa M. A.
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2022, 23 (05) : 787 - 795
  • [42] N-SOLITON SOLUTIONS, AUTO-BACKLUND TRANSFORMATIONS AND LAX PAIR FOR A NONISOSPECTRAL AND VARIABLE-COEFFICIENT KORTEWEG-DE VRIES EQUATION VIA SYMBOLIC COMPUTATION
    Li, Li-Li
    Tian, Bo
    Zhang, Chun-Yi
    Zhang, Hai-Qiang
    Li, Juan
    Xu, Tao
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2009, 23 (10): : 2383 - 2393
  • [43] Grammian solutions and pfaffianization of a non-isospectral and variable-coefficient Kadomtsev-Petviashvili equation
    Sun, Ye-Peng
    Tam, Hon-Wah
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 343 (02) : 810 - 817
  • [44] New Wronskian Representation of Solution for a Variable-Coefficient Kadomtsev-Petviashvili Equation
    吴建平
    耿献国
    Chinese Physics Letters, 2013, 30 (06) : 50 - 53
  • [45] Lump and rogue waves for the variable-coefficient Kadomtsev-Petviashvili equation in a fluid
    Jia, Xiao-Yue
    Tian, Bo
    Du, Zhong
    Sun, Yan
    Liu, Lei
    MODERN PHYSICS LETTERS B, 2018, 32 (10):
  • [46] Rogue waves for a variable-coefficient Kadomtsev-Petviashvili equation in fluid mechanics
    Wu, Xiao-Yu
    Tian, Bo
    Liu, Lei
    Sun, Yan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (02) : 215 - 223
  • [47] New Wronskian Representation of Solution for a Variable-Coefficient Kadomtsev-Petviashvili Equation
    Wu Jian-Ping
    Geng Xian-Guo
    CHINESE PHYSICS LETTERS, 2013, 30 (06)
  • [49] Application of the polynomial function method to the variable-coefficient Kadomtsev-Petviashvili equation
    Wu, Xue-Sha
    Zhang, Hao-Miao
    Liu, Jian-Guo
    RESULTS IN PHYSICS, 2023, 51
  • [50] Cauchy matrix approach to the nonisospectral and variable-coefficient Kadomtsev-Petviashvili equation
    Zhou, Zhen
    Zhang, Xinyuan
    Shen, Tong
    Li, Chunxia
    THEORETICAL AND MATHEMATICAL PHYSICS, 2025, 222 (03) : 401 - 413