N-soliton solutions, Backlund transformation and Lax Pair for a generalized variable-coefficient cylindrical Kadomtsev-Petviashvili equation

被引:16
|
作者
Lan, Zhong-Zhou [1 ]
机构
[1] Inner Mongolia Univ Finance & Econ, Sch Comp Informat Management, Hohhot 010070, Peoples R China
基金
中国国家自然科学基金;
关键词
A generalized variable-coefficient cylindrical; Kadomtsev-Petviashvili equation; Bell polynomials; Soliton solutions; Backlund transformation; Lax pair; SYMBOLIC COMPUTATION; MODEL;
D O I
10.1016/j.aml.2024.109239
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate a generalized variable-coefficient cylindrical Kadomtsev-Petviashvili equation, which characterizes the water waves propagation in the fluid dynamics. Via the generalized Laurent series truncated at the constant-level term, an auto-Backlund transformation is derived. We establish the bilinear form through the utilization of the Bell polynomials. Based on the Hirota method, we construct the N-soliton solutions. We derive the bilinear Backlund transformation and Lax pair by virtue of the Hirota bilinear operators' exchange formulae and symbolic computation.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Wronskian and Grammian determinant solutions for a variable-coefficient Kadomtsev-Petviashvili equation
    Yao Zhen-Zhi
    Zhang Chun-Yi
    Zhu Hong-Wu
    Meng Xiang-Hua
    Lue Xing
    Shan Wen-Rui
    Tian Bo
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 49 (05) : 1125 - 1128
  • [22] Multiple rogue wave solutions for a variable-coefficient Kadomtsev-Petviashvili equation
    Lu, Qingchen
    Ilhan, Onur Alp
    Manafian, Jalil
    Avazpour, Laleh
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2021, 98 (07) : 1457 - 1473
  • [23] A generating function for the N-soliton solutions of the Kadomtsev-Petviashvili II equation
    Chakravarty, Sarbarish
    Kodama, Yuji
    SPECIAL FUNCTIONS AND ORTHOGONAL POLYNOMIALS, 2008, 471 : 47 - +
  • [24] Various exact analytical solutions of a variable-coefficient Kadomtsev-Petviashvili equation
    Liu, Jian-Guo
    Zhu, Wen-Hui
    NONLINEAR DYNAMICS, 2020, 100 (03) : 2739 - 2751
  • [25] Backlund Transformations and Solutions of a Generalized Kadomtsev-Petviashvili Equation
    Wang Yun-Hu
    Chen Yong
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2012, 57 (02) : 217 - 222
  • [26] Auto-Backlund transformation and exact solutions to the generalized Kadomtsev-Petviashvili equation with variable coefficients
    Huang, DJ
    Zhang, HQ
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2004, 42 (03) : 325 - 328
  • [27] Solutions of a variable-coefficient Kadomtsev-Petviashvili equation via computer algebra
    Tian, B
    Gao, YT
    APPLIED MATHEMATICS AND COMPUTATION, 1997, 84 (2-3) : 125 - 130
  • [28] Painleve Analysis, Soliton Collision and Backlund Transformation for the (3+1)-Dimensional Variable-Coefficient Kadomtsev-Petviashvili Equation in Fluids or Plasmas
    Xie Xi-Yang
    Tian Bo
    Jiang Yan
    Zhong Hui
    Sun Ya
    Wang Yun-Po
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2014, 62 (01) : 26 - 32
  • [29] Soliton Solutions, Bcklund Transformations and Lax Pair for a(3 + 1)-Dimensional Variable-Coefficient Kadomtsev–Petviashvili Equation in Fluids
    王云坡
    田播
    孙文荣
    甄慧玲
    江彦
    孙亚
    解西阳
    Communications in Theoretical Physics, 2014, 61 (05) : 551 - 557
  • [30] Rational solutions and lump solutions to a non-isospectral and generalized variable-coefficient Kadomtsev-Petviashvili equation
    Liu, Jian-Guo
    Eslami, Mostafa
    Rezazadeh, Hadi
    Mirzazadeh, Mohammad
    NONLINEAR DYNAMICS, 2019, 95 (02) : 1027 - 1033