N-soliton solutions, Backlund transformation and Lax Pair for a generalized variable-coefficient cylindrical Kadomtsev-Petviashvili equation

被引:16
|
作者
Lan, Zhong-Zhou [1 ]
机构
[1] Inner Mongolia Univ Finance & Econ, Sch Comp Informat Management, Hohhot 010070, Peoples R China
基金
中国国家自然科学基金;
关键词
A generalized variable-coefficient cylindrical; Kadomtsev-Petviashvili equation; Bell polynomials; Soliton solutions; Backlund transformation; Lax pair; SYMBOLIC COMPUTATION; MODEL;
D O I
10.1016/j.aml.2024.109239
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate a generalized variable-coefficient cylindrical Kadomtsev-Petviashvili equation, which characterizes the water waves propagation in the fluid dynamics. Via the generalized Laurent series truncated at the constant-level term, an auto-Backlund transformation is derived. We establish the bilinear form through the utilization of the Bell polynomials. Based on the Hirota method, we construct the N-soliton solutions. We derive the bilinear Backlund transformation and Lax pair by virtue of the Hirota bilinear operators' exchange formulae and symbolic computation.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Auto-Backlund transformation and soliton-type solutions of the generalized variable-coefficient Kadomtsev-Petviashvili equation
    Liu Jian-Guo
    Li Ye-Zhou
    Wei Guang-Mei
    CHINESE PHYSICS LETTERS, 2006, 23 (07) : 1670 - 1673
  • [2] Soliton Solutions, Backlund Transformations and Lax Pair for a (3+1)-Dimensional Variable-Coefficient Kadomtsev-Petviashvili Equation in Fluids
    Wang Yun-Po
    Tian Bo
    Sun Wen-Rong
    Zhen Hui-Ling
    Jiang Yan
    Sun Ya
    Xie Xi-Yang
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2014, 61 (05) : 551 - 557
  • [3] Bilinear Backlund Transformation for a Variable-Coefficient Kadomtsev-Petviashvili Equation
    Wu Jian-Ping
    CHINESE PHYSICS LETTERS, 2011, 28 (06)
  • [4] Auto-Backlund transformation and exact solutions of the generalized variable-coefficient Kadomtsev-Petviashvili equation
    Liu, Jian-Guo
    Li, Ye-Zhou
    COMPUTER PHYSICS COMMUNICATIONS, 2008, 179 (10) : 724 - 732
  • [5] N-soliton solutions, Backlund transformation and Lax pair for a generalized variable-coefficient fifth-order Korteweg-de Vries equation
    Yu, Xin
    Gao, Yi-Tian
    Sun, Zhi-Yuan
    Liu, Ying
    PHYSICA SCRIPTA, 2010, 81 (04)
  • [6] On the integrability of a generalized variable-coefficient Kadomtsev-Petviashvili equation
    Tian, Shou-Fu
    Zhang, Hong-Qing
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (05)
  • [7] Pfaffianization of the generalized variable-coefficient Kadomtsev-Petviashvili equation
    Meng, Xiang-Hua
    Tian, Bo
    Zhang, Hai-Qiang
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (04) : 1300 - 1305
  • [8] Auto-Bäcklund transformation and soliton-type solutions of the generalized variable-coefficient Kadomtsev-Petviashvili equation
    School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
    不详
    Chin. Phys. Lett., 2006, 7 (1670-1673):
  • [9] Darboux Transformation and N-soliton Solution for Extended Form of Modified Kadomtsev Petviashvili Equation with Variable-Coefficient
    Luo, Xing-Yu
    Chen, Yong
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2016, 66 (02) : 179 - 188
  • [10] Extended Symmetry of Generalized Variable-Coefficient Kadomtsev-Petviashvili Equation
    Wang Jia
    Li Biao
    Ye Wang-Chuan
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2010, 53 (04) : 698 - 702