Generalized Poisson difference autoregressive processes

被引:2
|
作者
Carallo, Giulia [1 ]
Casarin, Roberto [1 ]
Robert, Christian P. [2 ,3 ]
机构
[1] CaFoscari Univ Venice, Venice, Italy
[2] Univ Paris 09, Paris, France
[3] Univ Warwick, Warwick, England
关键词
Bayesian inference; Counts time series; Cyber risk; GARCH models; Poisson processes; MODELING TIME-SERIES; MOVING-AVERAGE PROCESSES; STOCHASTIC VOLATILITY; COUNT DATA;
D O I
10.1016/j.ijforecast.2023.11.009
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper introduces a novel stochastic process with signed integer values. Its autoregressive dynamics effectively captures persistence in conditional moments, rendering it a valuable feature for forecasting applications. The increments follow a Generalized Poisson distribution, capable of accommodating over- and under-dispersion in the conditional distribution, thereby extending standard Poisson difference models. We derive key properties of the process, including stationarity conditions, the stationary distribution, and conditional and unconditional moments, which prove essential for accurate forecasting. We provide a Bayesian inference framework with an efficient posterior approximation based on Markov Chain Monte Carlo. This approach seamlessly incorporates inherent parameter uncertainty into predictive distributions. The effectiveness of the proposed model is demonstrated through applications to benchmark datasets on car accidents and an original dataset on cyber threats, highlighting its superior fitting and forecasting capabilities compared to standard Poisson models. (c) 2023 The Author(s). Published by Elsevier B.V. on behalf of International Institute of Forecasters. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:1359 / 1390
页数:32
相关论文
共 50 条
  • [1] Generalized Poisson integer-valued autoregressive processes with structural changes
    Zhang, Chenhui
    Wang, Dehui
    Yang, Kai
    Li, Han
    Wang, Xiaohong
    JOURNAL OF APPLIED STATISTICS, 2022, 49 (11) : 2717 - 2739
  • [2] SOME AUTOREGRESSIVE MOVING AVERAGE PROCESSES WITH GENERALIZED POISSON MARGINAL DISTRIBUTIONS
    ALZAID, AA
    ALOSH, MA
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1993, 45 (02) : 223 - 232
  • [3] Modeling overdispersed or underdispersed count data with generalized Poisson integer-valued autoregressive processes
    Kai Yang
    Yao Kang
    Dehui Wang
    Han Li
    Yajing Diao
    Metrika, 2019, 82 : 863 - 889
  • [4] Modeling overdispersed or underdispersed count data with generalized Poisson integer-valued autoregressive processes
    Yang, Kai
    Kang, Yao
    Wang, Dehui
    Li, Han
    Diao, Yajing
    METRIKA, 2019, 82 (07) : 863 - 889
  • [5] Generalized Poisson autoregressive models for time series of counts
    Chen, Cathy W. S.
    Lee, Sangyeol
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 99 : 51 - 67
  • [6] Generalized binary vector autoregressive processes
    Jentsch, Carsten
    Reichmann, Lena
    JOURNAL OF TIME SERIES ANALYSIS, 2022, 43 (02) : 285 - 311
  • [7] Autoregressive processes with generalized hyperbolic innovations
    Ghasami, Safdar
    Khodadadi, Zahra
    Maleki, Mohsen
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2020, 49 (12) : 3080 - 3092
  • [8] STRICT STATIONARITY OF GENERALIZED AUTOREGRESSIVE PROCESSES
    BOUGEROL, P
    PICARD, N
    ANNALS OF PROBABILITY, 1992, 20 (04): : 1714 - 1730
  • [9] Generalized Laplacian Distributions and Autoregressive Processes
    Jose, K. K.
    Thomas, Manu Mariam
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2011, 40 (23) : 4263 - 4277
  • [10] Poisson Difference Integer Valued Autoregressive Model of Order One
    Alzaid, Abdulhamid A.
    Omair, Maha A.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2014, 37 (02) : 465 - 485