STRICT STATIONARITY OF GENERALIZED AUTOREGRESSIVE PROCESSES

被引:270
|
作者
BOUGEROL, P [1 ]
PICARD, N [1 ]
机构
[1] UNIV NANCY 1, DEPT MATH, F-54506 VANDOEUVRE LES NANCY, FRANCE
来源
ANNALS OF PROBABILITY | 1992年 / 20卷 / 04期
关键词
AUTOREGRESSIVE MODEL; LINEAR STOCHASTIC SYSTEM; ARMA PROCESS; STRICT STATIONARITY; STATE SPACE SYSTEM; LYAPOUNOV EXPONENT; STOCHASTIC DIFFERENCE EQUATION;
D O I
10.1214/aop/1176989526
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we consider the multivariate equation X(n+1) = A(n+1)X(n) + B(n+1) with i.i.d. coefficients which have only a logarithmic moment. We give a necessary and sufficient condition for existence of a strictly stationary solution independent of the future. As an application we characterize the multivariate ARMA equations with general noise which have such a solution.
引用
收藏
页码:1714 / 1730
页数:17
相关论文
共 50 条