Generalized Poisson difference autoregressive processes

被引:2
|
作者
Carallo, Giulia [1 ]
Casarin, Roberto [1 ]
Robert, Christian P. [2 ,3 ]
机构
[1] CaFoscari Univ Venice, Venice, Italy
[2] Univ Paris 09, Paris, France
[3] Univ Warwick, Warwick, England
关键词
Bayesian inference; Counts time series; Cyber risk; GARCH models; Poisson processes; MODELING TIME-SERIES; MOVING-AVERAGE PROCESSES; STOCHASTIC VOLATILITY; COUNT DATA;
D O I
10.1016/j.ijforecast.2023.11.009
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper introduces a novel stochastic process with signed integer values. Its autoregressive dynamics effectively captures persistence in conditional moments, rendering it a valuable feature for forecasting applications. The increments follow a Generalized Poisson distribution, capable of accommodating over- and under-dispersion in the conditional distribution, thereby extending standard Poisson difference models. We derive key properties of the process, including stationarity conditions, the stationary distribution, and conditional and unconditional moments, which prove essential for accurate forecasting. We provide a Bayesian inference framework with an efficient posterior approximation based on Markov Chain Monte Carlo. This approach seamlessly incorporates inherent parameter uncertainty into predictive distributions. The effectiveness of the proposed model is demonstrated through applications to benchmark datasets on car accidents and an original dataset on cyber threats, highlighting its superior fitting and forecasting capabilities compared to standard Poisson models. (c) 2023 The Author(s). Published by Elsevier B.V. on behalf of International Institute of Forecasters. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:1359 / 1390
页数:32
相关论文
共 50 条
  • [11] Generalized Autoregressive Positive-valued Processes
    Feunou, Bruno
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2024, 42 (02) : 786 - 800
  • [12] Asymptotics for a class of generalized multicast autoregressive processes
    Hwang, S. Y.
    Kang, Kee-Hoon
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2012, 41 (04) : 543 - 554
  • [13] Asymptotics for a class of generalized multicast autoregressive processes
    S. Y. Hwang
    Kee-Hoon Kang
    Journal of the Korean Statistical Society, 2012, 41 : 543 - 554
  • [14] BRANCHING PROCESSES IN GENERALIZED AUTOREGRESSIVE CONDITIONAL ENVIRONMENTS
    Hueter, Irene
    ADVANCES IN APPLIED PROBABILITY, 2016, 48 (04) : 1211 - 1234
  • [15] Generalized Network Autoregressive Processes and the GNAR Package
    Knight, Marina
    Leeming, Kathryn
    Nason, Guy
    Nunes, Matthew
    JOURNAL OF STATISTICAL SOFTWARE, 2020, 96 (05): : 1 - 36
  • [16] Gaussian and sparse processes are limits of generalized Poisson processes
    Fageot, Julien
    Uhlmann, Virginie
    Unser, Michael
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2020, 48 (03) : 1045 - 1065
  • [17] On bivariate threshold Poisson integer-valued autoregressive processes
    Yang, Kai
    Zhao, Yiwei
    Li, Han
    Wang, Dehui
    METRIKA, 2023, 86 (08) : 931 - 963
  • [18] On bivariate threshold Poisson integer-valued autoregressive processes
    Kai Yang
    Yiwei Zhao
    Han Li
    Dehui Wang
    Metrika, 2023, 86 : 931 - 963
  • [19] Markov-switching poisson generalized autoregressive conditional heteroscedastic models
    Liu, Jichun
    Pan, Yue
    Pan, Jiazhu
    Almarashi, Abdullah
    STATISTICS AND ITS INTERFACE, 2023, 16 (01) : 531 - 544
  • [20] Parameter estimation for generalized random coefficient autoregressive processes
    Hwang, SY
    Basawa, IV
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1998, 68 (02) : 323 - 337