Brain-Inspired Physics-Informed Neural Networks: Bare-Minimum Neural Architectures for PDE Solvers

被引:0
|
作者
Markidis, Stefano [1 ]
机构
[1] KTH Royal Inst Technol, Stockholm, Sweden
来源
COMPUTATIONAL SCIENCE, ICCS 2024, PT I | 2024年 / 14832卷
关键词
Brain-Inspired PINN; Bare-Minimum PINN Architectures; Spectral Bias Phenomenon; Modular PINN; ALGORITHM;
D O I
10.1007/978-3-031-63749-0_23
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Physics-Informed Neural Networks (PINNs) have emerged as a powerful tool for solving partial differential equations (PDEs) in various scientific and engineering domains. However, traditional PINN architectures typically rely on large, fully connected multilayer perceptrons (MLPs), lacking the sparsity and modularity inherent in many traditional numerical solvers. An unsolved and critical question for PINN is: What is the minimum PINN complexity regarding nodes, layers, and connections needed to provide acceptable performance? To address this question, this study investigates a novel approach by merging established PINN methodologies with brain-inspired neural network techniques. We use Brain-Inspired Modular Training (BIMT), leveraging concepts such as locality, sparsity, and modularity inspired by the organization of the brain. With brain-inspired PINN, we demonstrate the evolution of PINN architectures from large, fully connected structures to bare-minimum, compact MLP architectures, often consisting of a few neural units! Moreover, using brain-inspired PINN, we showcase the spectral bias phenomenon occurring on the PINN architectures: bare-minimum architectures solving problems with high-frequency components require more neural units than PINN solving low-frequency problems. Finally, we derive basic PINN building blocks through BIMT training on simple problems akin to convolutional and attention modules in deep neural networks, enabling the construction of modular PINN architectures. Our experiments show that brain-inspired PINN training leads to PINN architectures that minimize the computing and memory resources yet provide accurate results.
引用
收藏
页码:331 / 345
页数:15
相关论文
共 50 条
  • [21] Physics-informed neural networks for periodic flows
    Shah, Smruti
    Anand, N. K.
    PHYSICS OF FLUIDS, 2024, 36 (07)
  • [22] Physics-informed neural networks for diffraction tomography
    Amirhossein Saba
    Carlo Gigli
    Ahmed B.Ayoub
    Demetri Psaltis
    Advanced Photonics, 2022, 4 (06) : 48 - 59
  • [23] On physics-informed neural networks for quantum computers
    Markidis, Stefano
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2022, 8
  • [24] Physics-Informed Neural Networks for shell structures
    Bastek, Jan-Hendrik
    Kochmann, Dennis M.
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2023, 97
  • [25] fPINNs: FRACTIONAL PHYSICS-INFORMED NEURAL NETWORKS
    Pang, Guofei
    Lu, Lu
    Karniadakis, George E. M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (04): : A2603 - A2626
  • [26] Brain-Inspired Architecture for Spiking Neural Networks
    Tang, Fengzhen
    Zhang, Junhuai
    Zhang, Chi
    Liu, Lianqing
    BIOMIMETICS, 2024, 9 (10)
  • [27] Brain-inspired neural circuit evolution for spiking neural networks
    Shen, Guobin
    Zhao, Dongcheng
    Dong, Yiting
    Zeng, Yi
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (39)
  • [28] Multi-output physics-informed neural networks for forward and inverse PDE problems with uncertainties
    Yang, Mingyuan
    Foster, John T.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 402
  • [29] VW-PINNs: A volume weighting method for PDE residuals in physics-informed neural networks
    Song, Jiahao
    Cao, Wenbo
    Liao, Fei
    Zhang, Weiwei
    ACTA MECHANICA SINICA, 2025, 41 (03)
  • [30] Parallel Physics-Informed Neural Networks with Bidirectional Balance
    Huang, Yuhao
    Xu, Jiarong
    Fang, Shaomei
    Zhu, Zupeng
    Jiang, Linfeng
    Liang, Xiaoxin
    6TH INTERNATIONAL CONFERENCE ON INNOVATION IN ARTIFICIAL INTELLIGENCE, ICIAI2022, 2022, : 23 - 30