An Integrated Integrable Hierarchy Arising from a Broadened Ablowitz-Kaup-Newell-Segur Scenario

被引:8
|
作者
Ma, Wen-Xiu [1 ,2 ,3 ,4 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[2] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[3] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[4] North West Univ, Dept Math Sci, Mat Sci Innovat & Modelling, Mafikeng Campus, ZA-2735 Mmabatho, South Africa
基金
中国国家自然科学基金;
关键词
matrix eigenvalue problem; Lax pair; zero-curvature equation; integrable model; bi-Hamiltonian formulation; NONLINEAR EVOLUTION-EQUATIONS; HAMILTONIAN-STRUCTURE; COUPLINGS; SYSTEMS;
D O I
10.3390/axioms13080563
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study introduces a 4x4 matrix eigenvalue problem and develops an integrable hierarchy with a bi-Hamiltonian structure. Integrability is ensured by the zero-curvature condition, while the Hamiltonian structure is supported by the trace identity. Explicit derivations yield second-order and third-order integrable equations, illustrating the integrable hierarchy.
引用
收藏
页数:11
相关论文
共 50 条