An Integrated Integrable Hierarchy Arising from a Broadened Ablowitz-Kaup-Newell-Segur Scenario

被引:8
|
作者
Ma, Wen-Xiu [1 ,2 ,3 ,4 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[2] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[3] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[4] North West Univ, Dept Math Sci, Mat Sci Innovat & Modelling, Mafikeng Campus, ZA-2735 Mmabatho, South Africa
基金
中国国家自然科学基金;
关键词
matrix eigenvalue problem; Lax pair; zero-curvature equation; integrable model; bi-Hamiltonian formulation; NONLINEAR EVOLUTION-EQUATIONS; HAMILTONIAN-STRUCTURE; COUPLINGS; SYSTEMS;
D O I
10.3390/axioms13080563
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study introduces a 4x4 matrix eigenvalue problem and develops an integrable hierarchy with a bi-Hamiltonian structure. Integrability is ensured by the zero-curvature condition, while the Hamiltonian structure is supported by the trace identity. Explicit derivations yield second-order and third-order integrable equations, illustrating the integrable hierarchy.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Integrable nonlocal finite-dimensional Hamiltonian systems related to the Ablowitz-Kaup-Newell-Segur system
    Xia, Baoqiang
    Zhou, Ruguang
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (08)
  • [22] Exact solutions and residual symmetries of the Ablowitz-Kaup-Newell-Segur system
    Liu Ping
    Zeng Bao-Qing
    Yang Jian-Rong
    Ren Bo
    CHINESE PHYSICS B, 2015, 24 (01)
  • [23] FINITE-GAP SOLUTIONS OF NONLOCAL EQUATIONS I N ABLOWITZ-KAUP-NEWELL-SEGUR HIERARCHY
    Smirnov, A. O.
    Matveev, V. B.
    UFA MATHEMATICAL JOURNAL, 2021, 13 (02): : 81 - 98
  • [24] Algebro-Geometric Solutions of a (2+1)-Dimensional Integrable Equation Associated with the Ablowitz-Kaup-Newell-Segur Soliton Hierarchy
    Chen, Xiaohong
    ADVANCES IN MATHEMATICAL PHYSICS, 2022, 2022
  • [25] Soliton Solutions for a Nonisospectral Semi-Discrete Ablowitz-Kaup-Newell-Segur Equation
    Zhao, Song-Lin
    MATHEMATICS, 2020, 8 (11) : 1 - 12
  • [26] NEW EXACT SOLUTIONS FOR ABLOWITZ-KAUP-NEWELL-SEGUR WATER WAVE EQUATION
    Dusunceli, Faruk
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2019, 10 (02): : 171 - 177
  • [27] Solitons in a generalized (2+1)-dimensional Ablowitz-Kaup-Newell-Segur system
    Zheng, CL
    Zhang, JF
    Wu, FM
    Sheng, ZM
    Chen, LQ
    CHINESE PHYSICS, 2003, 12 (05): : 472 - 478
  • [28] INVERSE SCATTERING TRANSFORM FOR NEW MIXED SPECTRAL ABLOWITZ-KAUP-NEWELL-SEGUR EQUATIONS
    Zhang, Sheng
    You, Caihong
    THERMAL SCIENCE, 2020, 24 (04): : 2437 - 2444
  • [29] Local and Nonlocal Reductions of Two Nonisospectral Ablowitz-Kaup-Newell-Segur Equations and Solutions
    Xu, Hai Jing
    Zhao, Song Lin
    SYMMETRY-BASEL, 2021, 13 (01): : 1 - 23
  • [30] DISCRETE SECOND-ORDER ABLOWITZ-KAUP-NEWELL-SEGUR EQUATION AND ITS MODIFIED FORM
    Zhang, Shuai
    Zhao, Song-Lin
    Shi, Ying
    THEORETICAL AND MATHEMATICAL PHYSICS, 2022, 210 (03) : 304 - 326