An Integrated Integrable Hierarchy Arising from a Broadened Ablowitz-Kaup-Newell-Segur Scenario

被引:8
|
作者
Ma, Wen-Xiu [1 ,2 ,3 ,4 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[2] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[3] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[4] North West Univ, Dept Math Sci, Mat Sci Innovat & Modelling, Mafikeng Campus, ZA-2735 Mmabatho, South Africa
基金
中国国家自然科学基金;
关键词
matrix eigenvalue problem; Lax pair; zero-curvature equation; integrable model; bi-Hamiltonian formulation; NONLINEAR EVOLUTION-EQUATIONS; HAMILTONIAN-STRUCTURE; COUPLINGS; SYSTEMS;
D O I
10.3390/axioms13080563
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study introduces a 4x4 matrix eigenvalue problem and develops an integrable hierarchy with a bi-Hamiltonian structure. Integrability is ensured by the zero-curvature condition, while the Hamiltonian structure is supported by the trace identity. Explicit derivations yield second-order and third-order integrable equations, illustrating the integrable hierarchy.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] SYMMETRIES OF THE ABLOWITZ-KAUP-NEWELL-SEGUR HIERARCHY
    KISO, K
    JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (01) : 284 - 293
  • [2] Completion of the Ablowitz-Kaup-Newell-Segur integrable coupling
    Shen, Shoufeng
    Li, Chunxia
    Jin, Yongyang
    Ma, Wen-Xiu
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (10)
  • [3] THE SYLVESTER EQUATION AND INTEGRABLE EQUATIONS: THE ABLOWITZ-KAUP-NEWELL-SEGUR SYSTEM
    Zhao, Song-Lin
    REPORTS ON MATHEMATICAL PHYSICS, 2018, 82 (02) : 241 - 263
  • [4] Darboux transformation for a generalized Ablowitz-Kaup-Newell-Segur hierarchy equation
    Guan, Xue
    Zhou, Qin
    Biswas, Anjan
    Alzahrani, Abdullah Kamis
    Liu, Wenjun
    PHYSICS LETTERS A, 2020, 384 (18)
  • [5] On the Treves theorem for the Ablowitz-Kaup-Newell-Segur equation
    Morosi, C
    Pizzocchero, L
    JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (12) : 4737 - 4753
  • [6] Conservation Laws for Ablowitz-Kaup-Newell-Segur Equation
    Mothibi, Dimpho Millicent
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015), 2016, 1738
  • [7] Discrete potential Ablowitz-Kaup-Newell-Segur equation
    Zhao, Song-lin
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2019, 25 (08) : 1134 - 1148
  • [8] Multi-component integrable couplings for the Ablowitz-Kaup-Newell-Segur and Volterra hierarchies
    Shen, Shoufeng
    Li, Chunxia
    Jin, Yongyang
    Yu, Shuimeng
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (17) : 4345 - 4356
  • [9] The fractional supertrace identity and its application to the super Ablowitz-Kaup-Newell-Segur hierarchy
    Wang, Hui
    Xia, Tie-Cheng
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (04)
  • [10] Novel soliton breathers for the higher-order Ablowitz-Kaup-Newell-Segur hierarchy
    Serkin, V. N.
    Belyaeva, T. L.
    OPTIK, 2018, 174 : 259 - 265