Knowledge Graph-Based Personalized Multitask Enhanced Recommendation

被引:0
|
作者
Guo, Liangmin [1 ,2 ]
Liu, Tingting [1 ,2 ]
Zhou, Shiming [1 ,2 ]
Tang, Haiyue [1 ,2 ]
Zheng, Xiaoyao [1 ,2 ]
Luo, Yonglong [1 ,2 ]
机构
[1] Anhui Normal Univ, Sch Comp & Informat, Wuhu 241003, Peoples R China
[2] Anhui Prov Key Lab Network & Informat Secur, Wuhu 241003, Peoples R China
基金
中国国家自然科学基金;
关键词
Knowledge graphs; Recommender systems; Semantics; Motion pictures; Accuracy; Feature extraction; Aggregates; Attention mechanism; knowledge graph; multitask learning (MTL); recommendation system;
D O I
10.1109/TCSS.2024.3446289
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
To address the problem of data sparsity in recommendation systems, various studies have used knowledge graphs as auxiliary information. These studies have employed multitask learning (MTL) to enhance recommendation performance. However, the shared information between tasks is not fully explored when using an MTL strategy for training both recommendation and knowledge graph-related tasks. Moreover, most studies cannot effectively model the knowledge sharing, consequently affecting recommendation performance. In response to these problems, we proposed a novel knowledge graph-based personalized multitask enhanced recommendation model. To explore the shared information between tasks, a relation attention mechanism was proposed to distinguish the relative importance of neighborhood information to the central entity. Additionally, we utilized a lightweight graph convolutional network to more effectively aggregate high-order neighborhood information from the knowledge graph. This approach improves the accuracy of neighborhood feature and ensures that more suitable shared information is obtained. Furthermore, we developed a linear interaction component to model knowledge sharing between recommendation and knowledge graph embedding tasks. This component allows for detailed feature interaction learning between items and entities, enhancing the shared feature representation, generalization capabilities, and overall performance of the recommendation system. The experimental results on three public datasets indicate that our model outperforms other benchmark models in CTR prediction and top-K recommendation.
引用
下载
收藏
页码:7685 / 7697
页数:13
相关论文
共 50 条
  • [41] Improving graph-based recommendation with unraveled graph learning
    Chang, Chih-Chieh
    Tzeng, Diing-Ruey
    Lu, Chia-Hsun
    Chang, Ming-Yi
    Shen, Chih-Ya
    DATA MINING AND KNOWLEDGE DISCOVERY, 2024, 38 (04) : 2440 - 2465
  • [42] Graph-based Recommendation using Graph Neural Networks
    Dossena, Marco
    Irwin, Christopher
    Portinale, Luigi
    2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 1769 - 1774
  • [43] Community Enhanced Knowledge Graph for Recommendation
    He, Zhen-Yu
    Wang, Chang-Dong
    Wang, Jinfeng
    Lai, Jian-Huang
    Tang, Yong
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, 11 (05) : 1 - 14
  • [44] A Knowledge Graph-Based Many-Objective Model for Explainable Social Recommendation
    Cai, Xingjuan
    Guo, Wanwan
    Zhao, Mengkai
    Cui, Zhihua
    Chen, Jinjun
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2023, 10 (06) : 3021 - 3030
  • [45] Entity-driven user intent inference for knowledge graph-based recommendation
    Shaosong Li
    Bo Yang
    Dongsheng Li
    Applied Intelligence, 2023, 53 : 10734 - 10750
  • [46] Predicting Learners Need for Recommendation Using Dynamic Graph-Based Knowledge Tracing
    Chanaa, Abdessamad
    El Faddouli, Nour-Eddine
    ARTIFICIAL INTELLIGENCE IN EDUCATION (AIED 2020), PT II, 2020, 12164 : 49 - 53
  • [47] Hierarchical attentive knowledge graph embedding for personalized recommendation
    Sha, Xiao
    Sun, Zhu
    Zhang, Jie
    ELECTRONIC COMMERCE RESEARCH AND APPLICATIONS, 2021, 48
  • [48] Entity-driven user intent inference for knowledge graph-based recommendation
    Li, Shaosong
    Yang, Bo
    Li, Dongsheng
    APPLIED INTELLIGENCE, 2023, 53 (09) : 10734 - 10750
  • [49] KG4Vis: A Knowledge Graph-Based Approach for Visualization Recommendation
    Li, Haotian
    Wang, Yong
    Zhang, Songheng
    Song, Yangqiu
    Qu, Huamin
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2022, 28 (01) : 195 - 205
  • [50] A Knowledge Graph-Based Implicit Requirement Mining Method in Personalized Product Development
    Mo, Zhenchong
    Gong, Lin
    Gao, Jun
    Cui, Haoran
    Lan, Junde
    APPLIED SCIENCES-BASEL, 2024, 14 (17):