Knowledge Graph-Based Personalized Multitask Enhanced Recommendation

被引:0
|
作者
Guo, Liangmin [1 ,2 ]
Liu, Tingting [1 ,2 ]
Zhou, Shiming [1 ,2 ]
Tang, Haiyue [1 ,2 ]
Zheng, Xiaoyao [1 ,2 ]
Luo, Yonglong [1 ,2 ]
机构
[1] Anhui Normal Univ, Sch Comp & Informat, Wuhu 241003, Peoples R China
[2] Anhui Prov Key Lab Network & Informat Secur, Wuhu 241003, Peoples R China
基金
中国国家自然科学基金;
关键词
Knowledge graphs; Recommender systems; Semantics; Motion pictures; Accuracy; Feature extraction; Aggregates; Attention mechanism; knowledge graph; multitask learning (MTL); recommendation system;
D O I
10.1109/TCSS.2024.3446289
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
To address the problem of data sparsity in recommendation systems, various studies have used knowledge graphs as auxiliary information. These studies have employed multitask learning (MTL) to enhance recommendation performance. However, the shared information between tasks is not fully explored when using an MTL strategy for training both recommendation and knowledge graph-related tasks. Moreover, most studies cannot effectively model the knowledge sharing, consequently affecting recommendation performance. In response to these problems, we proposed a novel knowledge graph-based personalized multitask enhanced recommendation model. To explore the shared information between tasks, a relation attention mechanism was proposed to distinguish the relative importance of neighborhood information to the central entity. Additionally, we utilized a lightweight graph convolutional network to more effectively aggregate high-order neighborhood information from the knowledge graph. This approach improves the accuracy of neighborhood feature and ensures that more suitable shared information is obtained. Furthermore, we developed a linear interaction component to model knowledge sharing between recommendation and knowledge graph embedding tasks. This component allows for detailed feature interaction learning between items and entities, enhancing the shared feature representation, generalization capabilities, and overall performance of the recommendation system. The experimental results on three public datasets indicate that our model outperforms other benchmark models in CTR prediction and top-K recommendation.
引用
下载
收藏
页码:7685 / 7697
页数:13
相关论文
共 50 条
  • [21] Knowledge Graph-Based Convolutional Network Coupled With Sentiment Analysis Towards Enhanced Drug Recommendation
    Saadat, Hajira
    Shah, Babar
    Halim, Zahid
    Anwar, Sajid
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2024, 21 (04) : 983 - 994
  • [22] Knowledge graph-based representation and recommendation for surrogate modeling method
    Wan, Silai
    Wang, Guoxin
    Ming, Zhenjun
    Yan, Yan
    Nellippallil, Anand Balu
    Allen, Janet K.
    Mistree, Farrokh
    ADVANCED ENGINEERING INFORMATICS, 2024, 62
  • [23] Knowledge graph-based recommendation method for cold chain logistics
    Li, Xiang
    Xie, Qian
    Zhu, Quanyin
    Ren, Ke
    Sun, Jizhou
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 227
  • [24] A Hybrid Pattern Knowledge Graph-Based API Recommendation Approach
    Wang, Guan
    Wang, Weidong
    Li, Dian
    ARTIFICIAL INTELLIGENCE, CICAI 2022, PT III, 2022, 13606 : 465 - 476
  • [25] Personalized Chinese Tourism Recommendation Algorithm Based on Knowledge Graph
    Su, Xueping
    He, Jiao
    Ren, Jie
    Peng, Jinye
    APPLIED SCIENCES-BASEL, 2022, 12 (20):
  • [26] A Personalized Attractions Recommendation Model based on Tourism Knowledge graph
    Jiang, Qi
    INTERNATIONAL CONFERENCE ON ENVIRONMENTAL REMOTE SENSING AND BIG DATA (ERSBD 2021), 2021, 12129
  • [27] GRAPH-BASED RECOMMENDATION SYSTEM
    Yang, Kaige
    Toni, Laura
    2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 798 - 802
  • [28] Graph-based recommendation by trust
    Wang, Liejun
    Pan, Long
    Qin, Jiwei
    INTERNATIONAL JOURNAL OF INTERNET PROTOCOL TECHNOLOGY, 2021, 14 (01) : 33 - 40
  • [29] Knowledge graph-based mapping and recommendation to automate life cycle assessment
    Peng, Tao
    Gao, Lu
    Agbozo, Reuben S. K.
    Xu, Yuming
    Svynarenko, Kateryna
    Wu, Qi
    Li, Changpeng
    Tang, Renzhong
    ADVANCED ENGINEERING INFORMATICS, 2024, 62
  • [30] Intelligent personalised exercise recommendation: A weighted knowledge graph-based approach
    Lv, Pin
    Wang, Xiaoxin
    Xu, Jia
    Wang, Junbin
    COMPUTER APPLICATIONS IN ENGINEERING EDUCATION, 2021, 29 (05) : 1403 - 1419