Optimizing pervious concrete with machine learning: Predicting permeability and compressive strength using artificial neural networks

被引:2
|
作者
Wu, Yinglong [1 ]
Pieralisi, R. [2 ]
Sandoval, F. Gersson B. [3 ]
Lopez-Carreno, R. D. [1 ,4 ]
Pujadas, P. [1 ,4 ]
机构
[1] Univ Politecn Catalunya BarcelonaTech UPC, Dept Project & Construct Engn, Ave Diagonal 647, Barcelona 08028, Spain
[2] Fed Univ Parana UFPR, Civil Engn Studies Ctr CESEC, Postgrad Program Civil Engn PPGEC, Curitiba, PR, Brazil
[3] Univ Catolica Norte, Dept Gest Construcc, Angamos 0610, Antofagasta, Chile
[4] Grp Construct Res & Innovat GRIC, C Colom 11,Ed TR5, Barcelona 08222, Spain
关键词
Artificial neural network; Pervious concrete; Permeability; Compressive strength; OF-THE-ART; SUSTAINABLE PAVEMENT MATERIAL; MECHANICAL-PROPERTIES; COMPACTION; CYLINDERS;
D O I
10.1016/j.conbuildmat.2024.137619
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This study makes a significant contribution to the field of pervious concrete by using machine learning to innovatively predict both mechanical and hydraulic performance. Unlike existing methods that rely on laborintensive trial-and-error experiments, our proposed approach leverages a multilayer perceptron network. To develop this approach, we compiled a comprehensive dataset comprising 271 sets and 3,252 experimental data points. Our methodology involved evaluating 22,246 network configurations, employing Monte Carlo crossvalidation over 20 iterations, and using 4 training algorithms, resulting in a total of 1,779,680 training iterations. This results in an optimized model that integrates diverse mix design parameters, enabling accurate predictions of permeability and compressive strength even in the absence of experimental data, achieving R2 values of 0.97 and 0.98, respectively. Sensitivity analyses validate the model's alignment with established principles of pervious concrete behavior. By demonstrating the efficacy of machine learning as a complementary tool for optimizing pervious concrete mix designs, this research not only addresses current methodological limitations but also lays the groundwork for more efficient and effective approaches in the field.
引用
下载
收藏
页数:17
相关论文
共 50 条
  • [21] Prediction of Concrete Compressive Strength by Evolutionary Artificial Neural Networks
    Nikoo, Mehdi
    TorabianMoghadam, Farshid
    Sadowski, Lukasz
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2015, 2015
  • [22] Predicting compressive strength of different geopolymers by artificial neural networks
    Nazari, Ali
    Torgal, F. Pacheco
    CERAMICS INTERNATIONAL, 2013, 39 (03) : 2247 - 2257
  • [23] Prediction of compressive strength of fly ash blended pervious concrete: a machine learning approach
    Sathiparan, Navaratnarajah
    Jeyananthan, Pratheeba
    Subramaniam, Daniel Niruban
    INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING, 2023, 24 (02)
  • [24] Application of artificial neural network for predicting compressive strength of geopolymer concrete
    Luhar, Salmabanu
    Luhar, Ismail
    Indian Concrete Journal, 2019, 98 (02): : 38 - 43
  • [25] EFFECTS OF METAKAOLIN ON COMPRESSIVE STRENGTH AND PERMEABILITY PROPERTIES OF PERVIOUS CEMENT CONCRETE
    Supit, Steve W. M.
    Pandei, Romario W.
    JURNAL TEKNOLOGI, 2019, 81 (05): : 33 - 39
  • [26] Predicting compressive strength of lightweight foamed concrete using extreme learning machine model
    Yaseen, Zaher Mundher
    Deo, Ravinesh C.
    Hilal, Ameer
    Abd, Abbas M.
    Bueno, Laura Cornejo
    Salcedo-Sanz, Sancho
    Nehdi, Moncef L.
    ADVANCES IN ENGINEERING SOFTWARE, 2018, 115 : 112 - 125
  • [27] Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models
    Asteris, Panagiotis G.
    Skentou, Athanasia D.
    Bardhan, Abidhan
    Samui, Pijush
    Pilakoutas, Kypros
    CEMENT AND CONCRETE RESEARCH, 2021, 145 (145)
  • [28] Predicting the Compressive Strength of Environmentally Friendly Concrete Using Multiple Machine Learning Algorithms
    Yang, Yanhua
    Liu, Guiyong
    Zhang, Haihong
    Zhang, Yan
    Yang, Xiaolong
    BUILDINGS, 2024, 14 (01)
  • [29] Feasibility analysis for predicting the compressive and tensile strength of concrete using machine learning algorithms
    Sami, Balahaha Hadi Ziyad
    Sami, Balahaha Fadi Ziyad
    Kumar, Pavitra
    Ahmed, Ali Najah
    Amieghemen, Goodnews E.
    Sherif, Muhammad M.
    El-Shafie, Ahmed
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2023, 18
  • [30] Predicting the compressive strength of concrete with fly ash admixture using machine learning algorithms
    Song, Hongwei
    Ahmad, Ayaz
    Farooq, Furqan
    Ostrowski, Krzysztof Adam
    Maslak, Mariusz
    Czarnecki, Slawomir
    Aslam, Fahid
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 308