Modular properties of massive scalar partition functions

被引:1
|
作者
Aggarwal, Ankit [1 ]
Barnich, Glenn [2 ,3 ]
机构
[1] TU Wien, Inst Theoret Phys, Wiedner Hauptstr 8-10-136, A-1040 Vienna, Austria
[2] Univ Libre Bruxelles, Phys Theor & Math, Campus Plaine CP 231, B-1050 Brussels, Belgium
[3] Int Solvay Inst, Campus Plaine CP 231, B-1050 Brussels, Belgium
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2024年 / 09期
基金
奥地利科学基金会;
关键词
Global Symmetries; Thermal Field Theory; Field Theories in Higher Dimensions; Scale and Conformal Symmetries; ZETA-FUNCTION REGULARIZATION; BOSE-EINSTEIN CONDENSATION; SYMMETRY-BREAKING; TENSOR; ENERGY;
D O I
10.1007/JHEP09(2024)127
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We compute the exact thermal partition functions of a massive scalar field on flat spacetime backgrounds of the form Rd-q x Tq+1 and show that they possess an SL(q + 1, Z) symmetry. Non-trivial relations between equivalent expressions for the result are obtained by doing the computation using functional, canonical and worldline methods. For q = 1, the results exhibit modular symmetry and may be expressed in terms of massive Maass-Jacobi forms. In the complex case with chemical potential for U(1) charge turned on, the usual discussion of relativistic Bose-Einstein condensation is modified by the presence of the small dimensions.
引用
收藏
页数:32
相关论文
共 50 条
  • [41] CONGRUENCE PROPERTIES OF THE PARTITION FUNCTION AND ASSOCIATED FUNCTIONS
    RUSHFORTH, JM
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1952, 48 (03): : 402 - 413
  • [42] q-Virasoro Modular Double and 3d Partition Functions
    Nedelin, Anton
    Nieri, Fabrizio
    Zabzine, Maxim
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 353 (03) : 1059 - 1102
  • [43] PARTITION VALUES AND CENTRAL CRITICAL VALUES OF CERTAIN MODULAR L-FUNCTIONS
    Webb, John J.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (04) : 1263 - 1272
  • [44] REALIZATIONS OF THE EXCEPTIONAL MODULAR INVARIANT A1(1) PARTITION-FUNCTIONS
    BOUWKNEGT, P
    NAHM, W
    PHYSICS LETTERS B, 1987, 184 (04) : 359 - 362
  • [45] q-Virasoro Modular Double and 3d Partition Functions
    Anton Nedelin
    Fabrizio Nieri
    Maxim Zabzine
    Communications in Mathematical Physics, 2017, 353 : 1059 - 1102
  • [46] Shape approximation by differential properties of scalar functions
    Biasotti, Silvia
    Patane, Giuseppe
    Spagnuolo, Michela
    Falcidieno, Bianca
    Barequet, Gill
    COMPUTERS & GRAPHICS-UK, 2010, 34 (03): : 252 - 262
  • [47] MODULAR PROPERTIES OF SCALAR FIELD-THEORIES IN 3 DIMENSIONS
    OSHIMA, K
    PHYSICAL REVIEW D, 1992, 46 (10): : 4765 - 4767
  • [48] Petersson scalar products and L-functions arising from modular forms
    Tsuyumine, Shigeaki
    RAMANUJAN JOURNAL, 2020, 52 (01): : 1 - 40
  • [49] Petersson scalar products and L-functions arising from modular forms
    Shigeaki Tsuyumine
    The Ramanujan Journal, 2020, 52 : 1 - 40
  • [50] Massive partition functions and complex eigenvalue correlations in matrix models with symplectic symmetry
    Akemann, G.
    Basile, F.
    NUCLEAR PHYSICS B, 2007, 766 (1-3) : 150 - 177