Modular properties of massive scalar partition functions

被引:1
|
作者
Aggarwal, Ankit [1 ]
Barnich, Glenn [2 ,3 ]
机构
[1] TU Wien, Inst Theoret Phys, Wiedner Hauptstr 8-10-136, A-1040 Vienna, Austria
[2] Univ Libre Bruxelles, Phys Theor & Math, Campus Plaine CP 231, B-1050 Brussels, Belgium
[3] Int Solvay Inst, Campus Plaine CP 231, B-1050 Brussels, Belgium
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2024年 / 09期
基金
奥地利科学基金会;
关键词
Global Symmetries; Thermal Field Theory; Field Theories in Higher Dimensions; Scale and Conformal Symmetries; ZETA-FUNCTION REGULARIZATION; BOSE-EINSTEIN CONDENSATION; SYMMETRY-BREAKING; TENSOR; ENERGY;
D O I
10.1007/JHEP09(2024)127
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We compute the exact thermal partition functions of a massive scalar field on flat spacetime backgrounds of the form Rd-q x Tq+1 and show that they possess an SL(q + 1, Z) symmetry. Non-trivial relations between equivalent expressions for the result are obtained by doing the computation using functional, canonical and worldline methods. For q = 1, the results exhibit modular symmetry and may be expressed in terms of massive Maass-Jacobi forms. In the complex case with chemical potential for U(1) charge turned on, the usual discussion of relativistic Bose-Einstein condensation is modified by the presence of the small dimensions.
引用
收藏
页数:32
相关论文
共 50 条
  • [21] Congruence properties of some partition functions
    Tamba, Manvendra
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2015, 21 (03) : 77 - 79
  • [22] Congruence Properties of Binary Partition Functions
    Katherine Anders
    Melissa Dennison
    Jennifer Weber Lansing
    Bruce Reznick
    Annals of Combinatorics, 2013, 17 : 15 - 26
  • [23] Arithmetic properties of septic partition functions
    Huber, Timothy
    Huerta, Mayra
    Mayes, Nathaniel
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2021, 17 (02) : 499 - 512
  • [24] Congruence Properties of Binary Partition Functions
    Anders, Katherine
    Dennison, Melissa
    Lansing, Jennifer Weber
    Reznick, Bruce
    ANNALS OF COMBINATORICS, 2013, 17 (01) : 15 - 26
  • [25] THE RANK-4 HETEROTIC MODULAR INVARIANT PARTITION-FUNCTIONS
    GANNON, T
    HOKIM, Q
    NUCLEAR PHYSICS B, 1994, 425 (1-2) : 319 - 342
  • [26] LATTICE REALIZATIONS OF UNITARY MINIMAL MODULAR INVARIANT PARTITION-FUNCTIONS
    OBRIEN, DL
    PEARCE, PA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (17): : 4891 - 4905
  • [27] MODULAR INVARIANT PARTITION-FUNCTIONS FOR PARAFERMIONIC FIELD-THEORIES
    GEPNER, D
    QIU, ZG
    NUCLEAR PHYSICS B, 1987, 285 (03) : 423 - 453
  • [29] THE CLASSIFICATION OF AFFINE SU(3) MODULAR INVARIANT PARTITION-FUNCTIONS
    GANNON, T
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 161 (02) : 233 - 263
  • [30] Modular invariant partition functions for noncompact G/Ad(H) models
    Bjoernsson, Jonas
    Fjelstad, Jens
    PHYSICAL REVIEW D, 2011, 83 (08):