A feasible smoothing accelerated projected gradient method for nonsmooth convex optimization

被引:0
|
作者
Nishioka, Akatsuki [1 ]
Kanno, Yoshihiro [1 ,2 ]
机构
[1] Univ Tokyo, Dept Math Informat, Bunkyo Ku, Hongo 7-3-1,Bunkyo Ku, Tokyo 1138656, Japan
[2] Univ Tokyo, Math & Informat Ctr, Hongo 7-3-1,Bunkyo Ku, Tokyo 1138656, Japan
关键词
Smoothing method; Accelerated gradient method; Convergence rate; Structural optimization; Eigenvalue optimization;
D O I
10.1016/j.orl.2024.107181
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Smoothing accelerated gradient methods achieve faster convergence rates than that of the subgradient method for some nonsmooth convex optimization problems. However, Nesterov's extrapolation may require gradients at infeasible points, and thus they cannot be applied to some structural optimization problems. We introduce a variant of smoothing accelerated projected gradient methods where every variable is feasible. The O ( k - 1 log k ) convergence rate is obtained using the Lyapunov function. We conduct a numerical experiment on the robust compliance optimization of a truss structure. (c) 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Smoothing Alternating Direction Methods for Fully Nonsmooth Constrained Convex Optimization
    Quoc Tran-Dinh
    Cevher, Volkan
    [J]. LARGE-SCALE AND DISTRIBUTED OPTIMIZATION, 2018, 2227 : 57 - 95
  • [42] Accelerated Projection Algorithm Based on Smoothing Approximation for Distributed Nonsmooth Optimization
    Zhao, You
    Liao, Xiaofeng
    He, Xing
    [J]. IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2023, 10 (04): : 1682 - 1694
  • [43] BARRIER SMOOTHING FOR NONSMOOTH CONVEX MINIMIZATION
    Tran-Dinh, Quoc
    Li, Yen-Huan
    Cevher, Volkan
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [44] TRUNCATED CODIFFERENTIAL METHOD FOR NONSMOOTH CONVEX OPTIMIZATION
    Bagirov, A. M.
    Ganjehlou, A. Nazari
    Ugon, J.
    Tor, A. H.
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2010, 6 (03): : 483 - 496
  • [45] Barrier method in nonsmooth convex optimization without convex representation
    Dutta, Joydeep
    [J]. OPTIMIZATION LETTERS, 2015, 9 (06) : 1177 - 1185
  • [46] Barrier method in nonsmooth convex optimization without convex representation
    Joydeep Dutta
    [J]. Optimization Letters, 2015, 9 : 1177 - 1185
  • [47] Accelerated gradient sliding for structured convex optimization
    Guanghui Lan
    Yuyuan Ouyang
    [J]. Computational Optimization and Applications, 2022, 82 : 361 - 394
  • [48] Accelerated gradient sliding for structured convex optimization
    Lan, Guanghui
    Ouyang, Yuyuan
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2022, 82 (02) : 361 - 394
  • [49] A trust region method for nonsmooth convex optimization
    Sagara, Nobuko
    Fukushima, Masao
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2005, 1 (02) : 171 - 180
  • [50] A smoothing conjugate gradient method for solving systems of nonsmooth equations
    Narushima, Yasushi
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (16) : 8646 - 8655