Landauer's principle and black hole area quantization

被引:2
|
作者
Bagchi, Bijan [1 ]
Ghosh, Aritra [2 ]
Sen, Sauvik [3 ]
机构
[1] Brainware Univ, Dept Math, Kolkata 700125, West Bengal, India
[2] Indian Inst Technol Bhubaneswar, Sch Basic Sci, Jatni 752050, Odisha, India
[3] Shiv Nadar Inst Eminence, Dept Phys, Gautam Buddha Nagar 203207, Uttar Pradesh, India
关键词
Landauer's principle; Area spectrum; Bekenstein-Hawking entropy; Logarithmic corrections to entropy; SPECTRUM; ENTROPY; KERR;
D O I
10.1007/s10714-024-03296-8
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This article assesses Landauer's principle from information theory in the context of area quantization of the Schwarzschild black hole. Within a quantum-mechanical perspective where Hawking evaporation can be interpreted in terms of transitions between the discrete states of the area (or mass) spectrum, we justify that Landauer's principle holds consistently in the saturated form when the number of microstates of the black hole goes as 2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2<^>n$$\end{document}, where n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} is a large positive integer labeling the levels of the area/mass spectrum in the semiclassical regime. This is equivalent to the area spacing Delta A=alpha lP2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta A = \alpha l_P<^>2$$\end{document} (in natural units), where alpha=4ln2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha = 4 \ln 2$$\end{document} for which the entropy spacing between consecutive levels in Boltzmann units coincides exactly with one bit of information. We also comment on the situation for other values of alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} prevalent in the literature.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] On Landauer’s Principle and Bound for Infinite Systems
    Roberto Longo
    Communications in Mathematical Physics, 2018, 363 : 531 - 560
  • [42] Dynamical randomness, information, and Landauer's principle
    Andrieux, D.
    Gaspard, P.
    EPL, 2008, 81 (02)
  • [43] Landauer's Principle in Repeated Interaction Systems
    Hanson, Eric P.
    Joye, Alain
    Pautrat, Yan
    Raquepas, Renaud
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 349 (01) : 285 - 327
  • [44] Landauer's Principle and Divergenceless Dynamical Systems
    Zander, Claudia
    Ricardo Plastino, Angel
    Plastino, Angelo
    Casas, Montserrat
    Curilef, Sergio
    ENTROPY, 2009, 11 (04): : 586 - 597
  • [45] Effect of Quantum Coherence on Landauer's Principle
    Hashimoto, Kazunari
    Uchiyama, Chikako
    ENTROPY, 2022, 24 (04)
  • [46] Molecular Dynamics Simulations and the Landauer's Principle
    Naeim, Ihab H.
    Batle, J.
    Kadry, S.
    Tarawneh, O.
    OPEN SYSTEMS & INFORMATION DYNAMICS, 2018, 25 (02):
  • [47] On Landauer's Principle and Bound for Infinite Systems
    Longo, Roberto
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 363 (02) : 531 - 560
  • [48] Mass quantization of the Schwarzschild black hole
    Vaz, C
    Witten, L
    PHYSICAL REVIEW D, 1999, 60 (02):
  • [49] Quantization of gravity in the black hole background
    Kallosh, Renata
    Rahman, Adel A.
    PHYSICAL REVIEW D, 2021, 104 (08)
  • [50] Polymeric quantization and black hole thermodynamics
    Gorji, M. A.
    Nozari, K.
    Vakili, B.
    PHYSICS LETTERS B, 2014, 735 : 62 - 68