Landauer's principle and black hole area quantization

被引:2
|
作者
Bagchi, Bijan [1 ]
Ghosh, Aritra [2 ]
Sen, Sauvik [3 ]
机构
[1] Brainware Univ, Dept Math, Kolkata 700125, West Bengal, India
[2] Indian Inst Technol Bhubaneswar, Sch Basic Sci, Jatni 752050, Odisha, India
[3] Shiv Nadar Inst Eminence, Dept Phys, Gautam Buddha Nagar 203207, Uttar Pradesh, India
关键词
Landauer's principle; Area spectrum; Bekenstein-Hawking entropy; Logarithmic corrections to entropy; SPECTRUM; ENTROPY; KERR;
D O I
10.1007/s10714-024-03296-8
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This article assesses Landauer's principle from information theory in the context of area quantization of the Schwarzschild black hole. Within a quantum-mechanical perspective where Hawking evaporation can be interpreted in terms of transitions between the discrete states of the area (or mass) spectrum, we justify that Landauer's principle holds consistently in the saturated form when the number of microstates of the black hole goes as 2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2<^>n$$\end{document}, where n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} is a large positive integer labeling the levels of the area/mass spectrum in the semiclassical regime. This is equivalent to the area spacing Delta A=alpha lP2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta A = \alpha l_P<^>2$$\end{document} (in natural units), where alpha=4ln2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha = 4 \ln 2$$\end{document} for which the entropy spacing between consecutive levels in Boltzmann units coincides exactly with one bit of information. We also comment on the situation for other values of alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} prevalent in the literature.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Black hole entropy quantization
    Corichi, Alejandro
    Diaz-Polo, Jacobo
    Fernandez-Borja, Enrique
    PHYSICAL REVIEW LETTERS, 2007, 98 (18)
  • [32] Quantization in black hole backgrounds
    Giddings, Steven B.
    PHYSICAL REVIEW D, 2007, 76 (06)
  • [33] Fermat's principle in black-hole spacetimes
    Hod, Shahar
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2018, 27 (14):
  • [34] Quantization of area for event and Cauchy horizons of the Kerr-Newman black hole
    Visser, Matt
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (06):
  • [35] Quantization of Horizon Area from the NUT-Kerr-Newman Black Hole
    Qi, De-Jiang
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2014, 53 (02) : 579 - 585
  • [36] Quantization of Horizon Area of Kerr-Newman-de Sitter Black Hole
    Meitei, Y. Kenedy
    Singh, T. Ibungochouba
    Meitei, I. Ablu
    CHINESE PHYSICS LETTERS, 2019, 36 (03)
  • [37] Quantization of area for event and Cauchy horizons of the Kerr-Newman black hole
    Matt Visser
    Journal of High Energy Physics, 2012
  • [38] Quantization of Horizon Area from the NUT-Kerr-Newman Black Hole
    De-Jiang Qi
    International Journal of Theoretical Physics, 2014, 53 : 579 - 585
  • [39] Landauer’s Principle in Repeated Interaction Systems
    Eric P. Hanson
    Alain Joye
    Yan Pautrat
    Renaud Raquépas
    Communications in Mathematical Physics, 2017, 349 : 285 - 327
  • [40] Physics and computation: The status of Landauer's Principle
    Ladyman, James
    COMPUTATION AND LOGIC IN THE REAL WORLD, PROCEEDINGS, 2007, 4497 : 446 - 454