Landauer's principle and black hole area quantization

被引:2
|
作者
Bagchi, Bijan [1 ]
Ghosh, Aritra [2 ]
Sen, Sauvik [3 ]
机构
[1] Brainware Univ, Dept Math, Kolkata 700125, West Bengal, India
[2] Indian Inst Technol Bhubaneswar, Sch Basic Sci, Jatni 752050, Odisha, India
[3] Shiv Nadar Inst Eminence, Dept Phys, Gautam Buddha Nagar 203207, Uttar Pradesh, India
关键词
Landauer's principle; Area spectrum; Bekenstein-Hawking entropy; Logarithmic corrections to entropy; SPECTRUM; ENTROPY; KERR;
D O I
10.1007/s10714-024-03296-8
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This article assesses Landauer's principle from information theory in the context of area quantization of the Schwarzschild black hole. Within a quantum-mechanical perspective where Hawking evaporation can be interpreted in terms of transitions between the discrete states of the area (or mass) spectrum, we justify that Landauer's principle holds consistently in the saturated form when the number of microstates of the black hole goes as 2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2<^>n$$\end{document}, where n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} is a large positive integer labeling the levels of the area/mass spectrum in the semiclassical regime. This is equivalent to the area spacing Delta A=alpha lP2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta A = \alpha l_P<^>2$$\end{document} (in natural units), where alpha=4ln2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha = 4 \ln 2$$\end{document} for which the entropy spacing between consecutive levels in Boltzmann units coincides exactly with one bit of information. We also comment on the situation for other values of alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} prevalent in the literature.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Black hole area quantization
    Das, S
    Ramadevi, P
    Yajnik, UA
    MODERN PHYSICS LETTERS A, 2002, 17 (15-17) : 993 - 1000
  • [2] On black hole area quantization and echoes
    Coates, Andrew
    Volkel, Sebastian H.
    Kokkotas, Kostas D.
    CLASSICAL AND QUANTUM GRAVITY, 2022, 39 (04)
  • [3] Quantization of the black hole area as quantization of the angular momentum component
    Ropotenko, Kostyantyn
    PHYSICAL REVIEW D, 2009, 80 (04):
  • [4] Minimal length and black hole area quantization
    Dvali, Gia
    Gomez, Cesar
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2011, 59 (7-8): : 579 - 585
  • [5] Signature of nonuniform area quantization on black hole echoes
    Chakravarti, Kabir
    Ghosh, Rajes
    Sarkar, Sudipta
    PHYSICAL REVIEW D, 2022, 105 (04)
  • [6] Quantization of Horizon Area from Accelerating and Rotating Black Hole
    Li, Hui-Ling
    Du, Yue
    Zheng, Wei
    Zhang, Zhi-Mei
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2014, 53 (07) : 2349 - 2359
  • [7] Gravitational wave echoes from black hole area quantization
    Cardoso, Vitor
    Foit, Valentino F.
    Kleban, Matthew
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2019, (08):
  • [8] Generalizing Landauer's principle
    Maroney, O. J. E.
    PHYSICAL REVIEW E, 2009, 79 (03):
  • [9] Quantization of Horizon Area from Accelerating and Rotating Black Hole
    Hui-Ling Li
    Yue Du
    Wei Zheng
    Zhi-Mei Zhang
    International Journal of Theoretical Physics, 2014, 53 : 2349 - 2359
  • [10] Differential Landauer's principle
    Granger, Leo
    Kantz, Holger
    EPL, 2013, 101 (05)