Stability analysis of surrounding rock of multi-cavern for compressed air energy storage

被引:0
|
作者
Ji, Wendong [1 ]
Wang, Shu [2 ]
Wan, Jifang [1 ]
Cheng, Shaozhen [1 ]
He, Jiaxin [1 ]
Shi, Shaohua [1 ]
机构
[1] China Energy Digital Technol Grp Co Ltd, Beijing 100044, Peoples R China
[2] Beijing Jiaotong Univ, Sch Civil & Architectural Engn, Beijing 100044, Peoples R China
来源
ADVANCES IN GEO-ENERGY RESEARCH | 2024年 / 13卷 / 03期
关键词
Compressed air energy storage; working pressure; cavern type; pillar space; cavern diameter; TEMPERATURE; PERFORMANCE; PRESSURE;
D O I
10.46690/ager.2024.09.03
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Compressed air energy storage in artificial caverns can mitigate the dependence on salt cavern and waste mines, as well as realize the rapid consumption of new energy and the "peak-cutting and valley-filling" of the power grid. At the same time, the safety and stability of the surrounding rock of gas storage has attracted extensive attention. Based on finite element simulation, a numerical model of shallow-buried double-chamber for compressed air energy storage is established, and the influence of working pressure, cavern type, pillar space, and cavern diameter on the mechanical behavior of surrounding rock is analyzed. It is discovered that the cavern type significantly affects the response of the surrounding rock, whose deformation and plastic strain in the horseshoe-shaped cavern is significantly larger than that in the circular cavern. For circular caverns, the pillar space of 2 similar to 3 times the cavern diameter is only suitable for low working pressure, and the plastic strain and deformation of surrounding rock increases sharply with the increase of working pressure. It is more appropriate to select the pillar space that is 4 times the cavern diameter when the working pressure is greater than 16 MPa. With the increase in the cavern diameter, the maximum deformation of the surrounding rock accelerates rapidly.
引用
收藏
页码:175 / 175
页数:1
相关论文
共 50 条
  • [21] Parameter design of the compressed air energy storage salt cavern in highly impure rock salt formations
    Li, Hang
    Ma, Hongling
    Zhao, Kai
    Zhu, Shijie
    Yang, Kun
    Zeng, Zhen
    Zheng, Zhuyan
    Yang, Chunhe
    ENERGY, 2024, 286
  • [22] Parameter design of the compressed air energy storage salt cavern in highly impure rock salt formations
    Li, Hang
    Ma, Hongling
    Zhao, Kai
    Zhu, Shijie
    Yang, Kun
    Zeng, Zhen
    Zheng, Zhuyan
    Yang, Chunhe
    Energy, 2024, 286
  • [23] A thermo-hydro-mechanical damage model for lined rock cavern for compressed air energy storage
    Wan, Fa
    Jiang, Zhongming
    Tian, Xiang
    Konietzky, Heinz
    Xiao, Zhezhen
    JOURNAL OF ENERGY STORAGE, 2024, 78
  • [24] Stability analysis of surrounding rock of a large hydropower cavern in the Himalayas
    Bhasin, R.
    Pabst, T.
    Li, Charlie
    ROCK CHARACTERISATION, MODELLING AND ENGINEERING DESIGN METHODS, 2013, : 659 - 664
  • [25] Analytical solution for load sharing in the structure of an underground lined rock cavern for compressed air energy storage and analysis of influencing factors
    Zhang, Guohua
    Xiang, Yue
    Wang, Xinjin
    Xiong, Feng
    Tang, Zhicheng
    Hua, Dongjie
    Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, 2024, 43 : 3633 - 3650
  • [26] Influence of spatial variability in surrounding rock on fracture propagation in compressed air energy storage caverns
    He, X. H.
    Zhou, S. W.
    Xu, Y. J.
    Qing, S. K.
    GEOSHANGHAI 2024 INTERNATIONAL CONFERENCE, VOL 6, 2024, 1335
  • [27] A nonlinear damage constitutive model applicable to the surrounding rock of compressed air energy storage caverns
    Zhu, Kaiyuan
    Sun, Guanhua
    Shi, Lu
    Lin, Shan
    Yu, Xianyang
    Journal of Energy Storage, 2025, 107
  • [28] Debrining prediction of a salt cavern used for compressed air energy storage
    Wang, Tongtao
    Yang, Chunhe
    Wang, Huimeng
    Ding, Shuanglong
    Daemen, J. J. K.
    ENERGY, 2018, 147 : 464 - 476
  • [29] An Analytical Solution for Mechanical Responses Induced by Temperature and Air Pressure in a Lined Rock Cavern for Underground Compressed Air Energy Storage
    Shu-Wei Zhou
    Cai-Chu Xia
    Shi-Gui Du
    Ping-Yang Zhang
    Yu Zhou
    Rock Mechanics and Rock Engineering, 2015, 48 : 749 - 770
  • [30] Stability analysis of surrounding rock of large underground powerhouse cavern group
    School of Water Resources and Hydropower, Wuhan University, Wuhan 430072, China
    不详
    不详
    Yanshilixue Yu Gongcheng Xuebao, 2008, SUPPL. (2864-2872):