Stability analysis of surrounding rock of multi-cavern for compressed air energy storage

被引:0
|
作者
Ji, Wendong [1 ]
Wang, Shu [2 ]
Wan, Jifang [1 ]
Cheng, Shaozhen [1 ]
He, Jiaxin [1 ]
Shi, Shaohua [1 ]
机构
[1] China Energy Digital Technol Grp Co Ltd, Beijing 100044, Peoples R China
[2] Beijing Jiaotong Univ, Sch Civil & Architectural Engn, Beijing 100044, Peoples R China
来源
ADVANCES IN GEO-ENERGY RESEARCH | 2024年 / 13卷 / 03期
关键词
Compressed air energy storage; working pressure; cavern type; pillar space; cavern diameter; TEMPERATURE; PERFORMANCE; PRESSURE;
D O I
10.46690/ager.2024.09.03
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Compressed air energy storage in artificial caverns can mitigate the dependence on salt cavern and waste mines, as well as realize the rapid consumption of new energy and the "peak-cutting and valley-filling" of the power grid. At the same time, the safety and stability of the surrounding rock of gas storage has attracted extensive attention. Based on finite element simulation, a numerical model of shallow-buried double-chamber for compressed air energy storage is established, and the influence of working pressure, cavern type, pillar space, and cavern diameter on the mechanical behavior of surrounding rock is analyzed. It is discovered that the cavern type significantly affects the response of the surrounding rock, whose deformation and plastic strain in the horseshoe-shaped cavern is significantly larger than that in the circular cavern. For circular caverns, the pillar space of 2 similar to 3 times the cavern diameter is only suitable for low working pressure, and the plastic strain and deformation of surrounding rock increases sharply with the increase of working pressure. It is more appropriate to select the pillar space that is 4 times the cavern diameter when the working pressure is greater than 16 MPa. With the increase in the cavern diameter, the maximum deformation of the surrounding rock accelerates rapidly.
引用
收藏
页码:175 / 175
页数:1
相关论文
共 50 条
  • [11] Stability of a lined rock cavern for compressed air energy storage containing a weak interlayer during blasting in the adjacent cavern: model tests and numerical simulation
    Mengchen Zhang
    Yi Luo
    Hangli Gong
    Xin Liu
    Yunchen Deng
    Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2023, 9
  • [12] Stability of a lined rock cavern for compressed air energy storage containing a weak interlayer during blasting in the adjacent cavern: model tests and numerical simulation
    Zhang, Mengchen
    Luo, Yi
    Gong, Hangli
    Liu, Xin
    Deng, Yunchen
    GEOMECHANICS AND GEOPHYSICS FOR GEO-ENERGY AND GEO-RESOURCES, 2023, 9 (01)
  • [13] Feasibility analysis on the debrining for compressed air energy storage salt cavern with sediment
    Xie, Dongzhou
    Jiang, Tingting
    Ren, Gaofeng
    Chi, Ziqi
    Cao, Dongling
    He, Tao
    Liao, Youqiang
    Zhang, Yixuan
    Renewable Energy, 2024, 237
  • [14] Long-term stability of a lined rock cavern for compressed air energy storage: thermo-mechanical damage modeling
    Zhou, Shuwei
    Xia, Caichu
    Zhou, Yu
    EUROPEAN JOURNAL OF ENVIRONMENTAL AND CIVIL ENGINEERING, 2020, 24 (12) : 2070 - 2093
  • [15] An accurate bilinear cavern model for compressed air energy storage
    Zhan, Junpeng
    Ansari, Osama Aslam
    Liu, Weijia
    Chung, C. Y.
    APPLIED ENERGY, 2019, 242 : 752 - 768
  • [16] Stability analysis for compressed air energy storage cavern with initial excavation damage zone in an abandoned mining tunnel
    Chen, Xiaohu
    Wang, J. G.
    JOURNAL OF ENERGY STORAGE, 2022, 45
  • [17] Study on multi-cavern optimization allocation for injection and production of salt cavern gas storage
    Liu, Mengyu
    Zhang, Min
    Liu, Huakun
    Cao, Lin
    THIRD INTERNATIONAL CONFERENCE ON ENERGY ENGINEERING AND ENVIRONMENTAL PROTECTION, 2019, 227
  • [18] Research on stability of the key roof above horizontal salt cavern for compressed air energy storage
    Zhang Gui-min
    Wang Zhen-shuo
    Liu Yu-xuan
    Luo Ning
    Dong Ji-wei
    ROCK AND SOIL MECHANICS, 2021, 42 (03) : 800 - 812
  • [19] Stability Analysis of Surrounding Rock Mass of Underground Powerhouse Cavern
    He, Xiaogang
    Dai, Feng
    Xu, Nuwen
    Sha, Chun
    CIVIL, STRUCTURAL AND ENVIRONMENTAL ENGINEERING, PTS 1-4, 2014, 838-841 : 878 - +
  • [20] Analysis on Surrounding Rock Stability of Joints Strike Parallel to the Cavern
    Zhang, Zhizeng
    Li, Yongtao
    Li, Xiaochang
    ADVANCES IN CIVIL AND STRUCTURAL ENGINEERING III, PTS 1-4, 2014, 501-504 : 1694 - 1700