Causes and Consequences of Varying Transposable Element Activity: An Evolutionary Perspective

被引:4
|
作者
Betancourt, Andrea J. [1 ]
Wei, Kevin H. -C. [2 ]
Huang, Yuheng [3 ]
Lee, Yuh Chwen G. [3 ,4 ]
机构
[1] Univ Liverpool, Inst Infect Vet & Ecol Sci, Liverpool, England
[2] Univ British Columbia, Dept Zool, Vancouver, BC, Canada
[3] Univ Calif Irvine, Dept Ecol & Evolutionary Biol, Irvine, CA 92697 USA
[4] Univ Calif Irvine, Ctr Complex Biol Syst, Irvine, CA 92697 USA
基金
加拿大自然科学与工程研究理事会; 欧洲研究理事会; 美国国家卫生研究院;
关键词
transposable elements; transposition; evolution; population genetics; arms; race; ROLLING-CIRCLE TRANSPOSONS; M HYBRID DYSGENESIS; L1; RETROTRANSPOSITION; LINE-1; DROSOPHILA-MELANOGASTER; POPULATION-GENETICS; GENOME INSTABILITY; SOMATIC MOSAICISM; SVA ELEMENTS; LONG-TERM;
D O I
10.1146/annurev-genom-120822-105708
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Transposable elements (TEs) are genomic parasites found in nearly all eukaryotes, including humans. This evolutionary success of TEs is due to their replicative activity, involving insertion into new genomic locations. TE activity varies at multiple levels, from between taxa to within individuals. The rapidly accumulating evidence of the influence of TE activity on human health, as well as the rapid growth of new tools to study it, motivated an evaluation of what we know about TE activity thus far. Here, we discuss why TE activity varies, and the consequences of this variation, from an evolutionary perspective. By studying TE activity in nonhuman organisms in the context of evolutionary theories, we can shed light on the factors that affect TE activity. While the consequences of TE activity are usually deleterious, some have lasting evolutionary impacts by conferring benefits on the host or affecting other evolutionary processes.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 50 条
  • [41] DNA METHYLATION AND ACTIVITY OF THE MAIZE SPM TRANSPOSABLE ELEMENT
    FEDOROFF, NV
    GENE SILENCING IN HIGHER PLANTS AND RELATED PHENOMENA IN OTHER EUKARYOTES, 1995, 197 : 143 - 164
  • [42] Dispersal Reduction: Causes, Genomic Mechanisms, and Evolutionary Consequences
    Waters, J. M.
    Emerson, B. C.
    Arribas, P.
    McCulloch, G. A.
    TRENDS IN ECOLOGY & EVOLUTION, 2020, 35 (06) : 512 - 522
  • [43] Transposable element and host silencing activity in gigantic genomes
    Wang, Jie
    Yuan, Liang
    Tang, Jiaxing
    Liu, Jiongyu
    Sun, Cheng
    Itgen, Michael W.
    Chen, Guiying
    Sessions, Stanley K.
    Zhang, Guangpu
    Mueller, Rachel Lockridge
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2023, 11
  • [44] Transposable element activity, genome regulation and human health
    Wang, Lu
    Jordan, I. King
    CURRENT OPINION IN GENETICS & DEVELOPMENT, 2018, 49 : 25 - 33
  • [45] Transposable Element Diversity and Activity Patterns in Neotropical Salamanders
    Decena-Segarra, Louis Paul
    Rovito, Sean M.
    MOLECULAR BIOLOGY AND EVOLUTION, 2024, 41 (11)
  • [46] Transcriptional activity of rice autonomous transposable element Dart
    Fujino, Kenji
    Matsuda, Yasuyuki
    Sekiguchi, Hiroshi
    JOURNAL OF PLANT PHYSIOLOGY, 2009, 166 (14) : 1537 - 1543
  • [48] Real Time Transposable Element Activity in Individual Live Cells
    Kim, Neil H.
    Lee, Gloria
    Sherer, Nicholas A.
    Martini, K. Michael
    Goldenfeld, Nigel
    Kuhlman, Thomas E.
    BIOPHYSICAL JOURNAL, 2016, 110 (03) : 478A - 479A
  • [49] The evolutionary causes and consequences of sex-biased gene expression
    Parsch, John
    Ellegren, Hans
    NATURE REVIEWS GENETICS, 2013, 14 (02) : 83 - 87
  • [50] Transposable element activity captures human pluripotent cell states
    Levin-Ferreyra, Florencia
    Kodali, Srikanth
    Cui, Yingzhi
    Pashos, Alison R. S.
    Pessina, Patrizia
    Brumbaugh, Justin
    Di Stefano, Bruno
    EMBO REPORTS, 2025, 26 (02) : 329 - 352