Causes and Consequences of Varying Transposable Element Activity: An Evolutionary Perspective

被引:4
|
作者
Betancourt, Andrea J. [1 ]
Wei, Kevin H. -C. [2 ]
Huang, Yuheng [3 ]
Lee, Yuh Chwen G. [3 ,4 ]
机构
[1] Univ Liverpool, Inst Infect Vet & Ecol Sci, Liverpool, England
[2] Univ British Columbia, Dept Zool, Vancouver, BC, Canada
[3] Univ Calif Irvine, Dept Ecol & Evolutionary Biol, Irvine, CA 92697 USA
[4] Univ Calif Irvine, Ctr Complex Biol Syst, Irvine, CA 92697 USA
基金
加拿大自然科学与工程研究理事会; 欧洲研究理事会; 美国国家卫生研究院;
关键词
transposable elements; transposition; evolution; population genetics; arms; race; ROLLING-CIRCLE TRANSPOSONS; M HYBRID DYSGENESIS; L1; RETROTRANSPOSITION; LINE-1; DROSOPHILA-MELANOGASTER; POPULATION-GENETICS; GENOME INSTABILITY; SOMATIC MOSAICISM; SVA ELEMENTS; LONG-TERM;
D O I
10.1146/annurev-genom-120822-105708
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Transposable elements (TEs) are genomic parasites found in nearly all eukaryotes, including humans. This evolutionary success of TEs is due to their replicative activity, involving insertion into new genomic locations. TE activity varies at multiple levels, from between taxa to within individuals. The rapidly accumulating evidence of the influence of TE activity on human health, as well as the rapid growth of new tools to study it, motivated an evaluation of what we know about TE activity thus far. Here, we discuss why TE activity varies, and the consequences of this variation, from an evolutionary perspective. By studying TE activity in nonhuman organisms in the context of evolutionary theories, we can shed light on the factors that affect TE activity. While the consequences of TE activity are usually deleterious, some have lasting evolutionary impacts by conferring benefits on the host or affecting other evolutionary processes.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 50 条
  • [31] Evolutionary transitions in the Asteraceae coincide with marked shifts in transposable element abundance
    Staton, S. Evan
    Burke, John M.
    BMC GENOMICS, 2015, 16
  • [32] The Evolutionary History of the Transposable Element Penelope in the Drosophila virilis Group of Species
    Ramiro Morales-Hojas
    Cristina P. Vieira
    Jorge Vieira
    Journal of Molecular Evolution, 2006, 63 : 262 - 273
  • [33] The evolutionary history of the transposable element Penelope in the Drosophila virilis group of species
    Morales-Hojas, Ramiro
    Vieira, Cristina P.
    Vieira, Jorge
    JOURNAL OF MOLECULAR EVOLUTION, 2006, 63 (02) : 262 - 273
  • [34] Adaptation to Global Change: A Transposable Element-Epigenetics Perspective
    Rey, Olivier
    Danchin, Etienne
    Mirouze, Marie
    Loot, Celine
    Blanchet, Simon
    TRENDS IN ECOLOGY & EVOLUTION, 2016, 31 (07) : 514 - 526
  • [35] A transposable element insertion in APOB causes cholesterol deficiency in Holstein cattle
    Menzi, F.
    Besuchet-Schmutz, N.
    Fragniere, M.
    Hofstetter, S.
    Jagannathan, V.
    Mock, T.
    Raemy, A.
    Studer, E.
    Mehinagic, K.
    Regenscheit, N.
    Meylan, M.
    Schmitz-Hsu, F.
    Droegemueller, C.
    ANIMAL GENETICS, 2016, 47 (02) : 253 - 257
  • [36] Double-edged sword: The evolutionary consequences of the epigenetic silencing of transposable elements
    Choi, Jae Young
    Lee, Yuh Chwen G.
    PLOS GENETICS, 2020, 16 (07):
  • [37] Causes and consequences of linkage disequilibrium among transposable elements within eukaryotic genomes
    Roze, Denis
    GENETICS, 2023, 224 (02)
  • [38] Harmonia axyridis invasions: Deducing evolutionary causes and consequences
    Sloggett, John J.
    ENTOMOLOGICAL SCIENCE, 2012, 15 (03) : 261 - 273
  • [39] Evolutionary causes and consequences of sequential polyandry in anuran amphibians
    Byrne, Phillip G.
    Roberts, J. Dale
    BIOLOGICAL REVIEWS, 2012, 87 (01) : 209 - 228
  • [40] An ethological investigation of the evolutionary causes and consequences of fasting in humans
    Placek, Caitlyn D.
    AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, 2019, 168 : 192 - 192