ScAlInN/GaN heterostructures grown by molecular beam epitaxy

被引:0
|
作者
Ye, Haotian [1 ]
Wang, Rui [1 ]
Yang, Liuyun [1 ]
Wang, Jinlin [1 ]
Wang, Tao [1 ,2 ]
Feng, Ran [1 ]
Xu, Xifan [1 ]
Lee, Wonseok [1 ]
Wang, Ping [1 ]
Wang, Xinqiang [1 ]
机构
[1] Peking Univ, Sch Phys, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Phys, Electron Microscopy Lab, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
SCALN; TEMPERATURE; PERFORMANCE; ALLOY;
D O I
10.1063/5.0228747
中图分类号
O59 [应用物理学];
学科分类号
摘要
Rare-earth (RE) elements doped III-nitride semiconductors have garnered attention for their potential in advanced high-frequency and high-power electronic applications. We report on the molecular beam epitaxy of quaternary alloy ScAlInN, which is an encouraging strategy to improve the heterointerface quality when grown at relatively low temperatures. Monocrystalline wurtzite phase and uniform domain structures are achieved in ScAlInN/GaN heterostructures, featuring atomically sharp interface. ScAlInN (the Sc content in the ScAlN fraction is 14%) films with lower In contents (less than 6%) are nearly lattice matched to GaN, exhibiting negligible in-plane strain, which are excellent barrier layer candidates for GaN high electron mobility transistors (HEMTs). Using a 15-nm-thick Sc0.13Al0.83In0.04N as a barrier layer in GaN HEMT, a two-dimensional electron gas density of 4.00 x 10(13) cm(-2) and a Hall mobility of 928 cm(2)/V s, with a corresponding sheet resistance of 169 Omega/square, have been achieved. This work underscores the potential of alloy engineering to adjust lattice parameters, bandgap, polarization, interfaces, and strain in emerging RE-III-nitrides, paving the way for their use in next-generation optoelectronic, electronic, acoustic, and ferroelectric applications.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Amorphous GaN grown by room temperature molecular beam epitaxy
    Kuball, M
    Mokhtari, H
    Cherns, D
    Lu, J
    Westwood, DI
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2000, 39 (08): : 4753 - 4754
  • [42] Magnesium incorporation in GaN grown by molecular-beam epitaxy
    Ptak, AJ
    Myers, TH
    Romano, LT
    Van de Walle, CG
    Northrup, JE
    APPLIED PHYSICS LETTERS, 2001, 78 (03) : 285 - 287
  • [43] Cu-doped GaN grown by molecular beam epitaxy
    Ganz, P. R.
    Suergers, C.
    Fischer, G.
    Schaadt, D. M.
    INTERNATIONAL CONFERENCE ON MAGNETISM (ICM 2009), 2010, 200
  • [44] A study of cracking in GaN grown on silicon by molecular beam epitaxy
    Jothilingam, R
    Koch, MW
    Posthill, JB
    Wicks, GW
    JOURNAL OF ELECTRONIC MATERIALS, 2001, 30 (07) : 821 - 824
  • [45] Morphology of luminescent GaN films grown by molecular beam epitaxy
    TragerCowan, C
    ODonnell, KP
    Hooper, SE
    Foxon, CT
    APPLIED PHYSICS LETTERS, 1996, 68 (03) : 355 - 357
  • [46] Germanium doping of cubic GaN grown by molecular beam epitaxy
    Deppe, M.
    Gerlach, J. W.
    Shvarkov, S.
    Rogalla, D.
    Becker, H. -W.
    Reuter, D.
    As, D. J.
    JOURNAL OF APPLIED PHYSICS, 2019, 125 (09)
  • [47] EXCITONIC RECOMBINATION IN GAN GROWN BY MOLECULAR-BEAM EPITAXY
    SMITH, M
    CHEN, GD
    LI, JZ
    LIN, JY
    JIANG, HX
    SALVADOR, A
    KIM, WK
    AKTAS, O
    BOTCHKAREV, A
    MORKOC, H
    APPLIED PHYSICS LETTERS, 1995, 67 (23) : 3387 - 3389
  • [48] Donor acceptor pair in molecular beam epitaxy grown GaN
    Ren, G.B.
    Dewsnip, D.J.
    Lacklison, D.E.
    Orton, J.W.
    Cheng, T.S.
    Foxon, C.T.
    Materials science & engineering. B, Solid-state materials for advanced technology, 1997, B43 (1-3): : 242 - 245
  • [49] Amorphous GaN grown by room temperature molecular beam epitaxy
    Kuball, Martin
    Mokhtari, Hossein
    Cherns, David
    Lu, Jun
    Westwood, David I.
    1600, JJAP, Tokyo (39):
  • [50] Donor acceptor pair in molecular beam epitaxy grown GaN
    Ren, GB
    Dewsnip, DJ
    Lacklison, DE
    Orton, JW
    Cheng, TS
    Foxon, CT
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1997, 43 (1-3): : 242 - 245