Automatically Extracting and Utilizing EEG Channel Importance Based on Graph Convolutional Network for Emotion Recognition

被引:0
|
作者
Yang, Kun [1 ,2 ]
Yao, Zhenning [1 ,2 ]
Zhang, Keze [1 ,2 ]
Xu, Jing [3 ]
Zhu, Li [1 ,2 ]
Cheng, Shichao [1 ,2 ]
Zhang, Jianhai [1 ,2 ]
机构
[1] Hangzhou Dianzi Univ, Sch Comp Sci & Technol, Hangzhou 310018, Peoples R China
[2] Key Lab Brain Machine Collaborat Intelligence Zhej, Hangzhou 310018, Peoples R China
[3] Zhejiang Gongshang Univ, Sch Stat & Math, Hangzhou 310018, Peoples R China
关键词
Brain modeling; Emotion recognition; Electroencephalography; Feature extraction; Convolution; Data mining; Task analysis; EEG; emotion recognition; graph convolu- tional network (GCN); core network; channel importance; channel convolution; SENTIMENT CLASSIFICATION;
D O I
10.1109/JBHI.2024.3404146
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Graph convolutional network (GCN) based on the brain network has been widely used for EEG emotion recognition. However, most studies train their models directly without considering network dimensionality reduction beforehand. In fact, some nodes and edges are invalid information or even interference information for the current task. It is necessary to reduce the network dimension and extract the core network. To address the problem of extracting and utilizing the core network, a core network extraction model (CWGCN) based on channel weighting and graph convolutional network and a graph convolutional network model (CCSR-GCN) based on channel convolution and style-based recalibration for emotion recognition have been proposed. The CWGCN model automatically extracts the core network and the channel importance parameter in a data-driven manner. The CCSR-GCN model innovatively uses the output information of the CWGCN model to identify the emotion state. The experimental results on SEED show that: 1) the core network extraction can help improve the performance of the GCN model; 2) the models of CWGCN and CCSR-GCN achieve better results than the currently popular methods. The idea and its implementation in this paper provide a novel and successful perspective for the application of GCN in brain network analysis of other specific tasks.
引用
收藏
页码:4588 / 4598
页数:11
相关论文
共 50 条
  • [31] EEG emotion recognition based on efficient-capsule network with convolutional attention
    Tang, Wei
    Fan, Linhui
    Lin, Xuefen
    Gu, Yifan
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 103
  • [32] Music emotion recognition based on temporal convolutional attention network using EEG
    Qiao, Yinghao
    Mu, Jiajia
    Xie, Jialan
    Hu, Binghui
    Liu, Guangyuan
    FRONTIERS IN HUMAN NEUROSCIENCE, 2024, 18
  • [33] Accurate emotion recognition using Bayesian model based EEG sources as dynamic graph convolutional neural network nodes
    Shiva Asadzadeh
    Tohid Yousefi Rezaii
    Soosan Beheshti
    Saeed Meshgini
    Scientific Reports, 12
  • [34] Accurate emotion recognition using Bayesian model based EEG sources as dynamic graph convolutional neural network nodes
    Asadzadeh, Shiva
    Yousefi Rezaii, Tohid
    Beheshti, Soosan
    Meshgini, Saeed
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [35] EEG Emotion Recognition Using Dynamical Graph Convolutional Neural Networks
    Song, Tengfei
    Zheng, Wenming
    Song, Peng
    Cui, Zhen
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2020, 11 (03) : 532 - 541
  • [36] Electroencephalogram-based Emotion Recognition with Hybrid Graph Convolutional Network Model
    Nahin, Rakibul Alam
    Islam, Md. Tahmidul
    Kabir, Abrar
    Afrin, Sadiya
    Chowdhury, Imtiaz Ahmed
    Rahman, Rafeed
    Alam, Md. Golam Rabiul
    2023 IEEE 13TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE, CCWC, 2023, : 705 - 711
  • [37] EEG based depression recognition using improved graph convolutional neural network
    Zhu, Jing
    Jiang, Changting
    Chen, Junhao
    Lin, Xiangbin
    Yu, Ruilan
    Li, Xiaowei
    Bin Hu
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 148
  • [38] Multi-View Hierarchical Attention Graph Convolutional Network with Domain Adaptation for EEG Emotion Recognition
    Li, Chao
    Wang, Feng
    Bian, Ning
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CRYPTOGRAPHY, NETWORK SECURITY AND COMMUNICATION TECHNOLOGY, CNSCT 2024, 2024, : 624 - 630
  • [39] Multi-channel EEG emotion recognition through residual graph attention neural network
    Chao, Hao
    Cao, Yiming
    Liu, Yongli
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [40] Emotion recognition using multi-scale EEG features through graph convolutional attention network
    Cao, Liwen
    Zhao, Wenfeng
    Sun, Biao
    NEURAL NETWORKS, 2025, 184