Full quantum eigensolvers based on variance

被引:0
|
作者
Li, Ruo-Nan [1 ]
Tao, Yuan-Hong [1 ]
Liang, Jin-Min [2 ]
Wu, Shu-Hui [1 ]
Fei, Shao-Ming [3 ,4 ]
机构
[1] Zhejiang Univ Sci & Technol, Coll Sci, Dept Big Data, Hangzhou 310023, Zhejiang, Peoples R China
[2] Peking Univ, Frontiers Sci Ctr Nanooptoelectron, Sch Phys, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
[3] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[4] Max Plank Inst Math Sci, D-04103 Leipzig, Germany
基金
中国国家自然科学基金;
关键词
variance; eigenstate; full quantum eigensolver; variational quantum eigensolver; quantum gradient descent method; LCU decomposition; SIMULATION;
D O I
10.1088/1402-4896/ad664c
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The advancement of quantum computation paves a novel way for addressing the issue of eigenstates. In this paper, two full quantum eigenvalue solvers based on quantum gradient descent are put forward. Compared to the existing classical-quantum hybrid approaches such as the variance-variational quantum eigenvalue solver, our method enables faster convergent computations on quantum computers without the participation of classical algorithms. As any eigenstate of a Hamiltonian has zero variance, this paper takes the variance as the objective function and utilizes the quantum gradient descent method to optimize it, demonstrating the optimization of the objective function on the quantum simulator. With the swift progress of quantum computing hardware, the two variance full quantum eigensolvers proposed in this paper are anticipated to be implemented on quantum computers, thereby offering an efficient and potent calculation approach for solving eigenstate problems. Employing this algorithm, we showcase 2 qubits of deuterium and hydrogen molecule. Furthermore, we numerically investigate the energy and variance of the Ising model in larger systems, including 3, 4, 5, 6, and 10 qubits.
引用
收藏
页数:18
相关论文
共 50 条
  • [11] Physically Motivated Improvements of Variational Quantum Eigensolvers
    Vaquero-Sabater, Nonia
    Carreras, Abel
    Orus, Roman
    Mayhall, Nicholas J.
    Casanova, David
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (12) : 5133 - 5144
  • [12] Parent Hamiltonian as a benchmark problem for variational quantum eigensolvers
    Kobayashi, Fumiyoshi
    Mitarai, Kosuke
    Fujii, Keisuke
    PHYSICAL REVIEW A, 2022, 105 (05)
  • [13] Quantifying the effect of gate errors on variational quantum eigensolvers for quantum chemistry
    Dalton, Kieran
    Long, Christopher K.
    Yordanov, Yordan S.
    Smith, Charles G.
    Barnes, Crispin H. W.
    Mertig, Normann
    Arvidsson-Shukur, David R. M.
    NPJ QUANTUM INFORMATION, 2024, 10 (01)
  • [14] Quantifying the effect of gate errors on variational quantum eigensolvers for quantum chemistry
    Kieran Dalton
    Christopher K. Long
    Yordan S. Yordanov
    Charles G. Smith
    Crispin H. W. Barnes
    Normann Mertig
    David R. M. Arvidsson-Shukur
    npj Quantum Information, 10
  • [15] CoolMomentum mitigating local minima in variational quantum eigensolvers
    Tsukayama, Daisuke
    Shirakashi, Jun-ichi
    Imai, Hiroshi
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2023, 62 (08)
  • [16] Preserving Symmetries for Variational Quantum Eigensolvers in the Presence of Noise
    Barron, George S.
    Gard, Bryan T.
    Altman, Orien J.
    Mayhall, Nicholas J.
    Barnes, Edwin
    Economou, Sophia E.
    PHYSICAL REVIEW APPLIED, 2021, 16 (03)
  • [17] Fermionic adaptive sampling theory for variational quantum eigensolvers
    Majland, Marco
    Ettenhuber, Patrick
    Zinner, Nikolaj Thomas
    PHYSICAL REVIEW A, 2023, 108 (05)
  • [18] Inverse iteration quantum eigensolvers assisted with a continuous variable
    He, Min-Quan
    Zhang, Dan-Bo
    Wang, Z. D.
    QUANTUM SCIENCE AND TECHNOLOGY, 2022, 7 (02)
  • [19] Multi-Party Quantum Key Distribution Using Variational Quantum Eigensolvers
    Sihare, Shyam R.
    ADVANCED QUANTUM TECHNOLOGIES, 2024, 7 (01)
  • [20] Adaptive variational quantum eigensolvers for highly excited states
    Zhang, Feng
    Gomes, Niladri
    Yao, Yongxin
    Orth, Peter P.
    Iadecola, Thomas
    PHYSICAL REVIEW B, 2021, 104 (07)