On 2-local derivations of von Neumann algebras

被引:0
|
作者
Liu, Lei [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
Derivations; 2-local derivations; von Neumann algebras; AUTOMORPHISMS;
D O I
10.1080/03081087.2024.2400490
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let $ \mathcal {A} $ A be a semi-finite factor von Neumann algebra. We prove that if a map $ \delta : \mathcal {A}\rightarrow \mathcal {A} $ delta:A -> A satisfies that for any $ A, B\in \mathcal {A} $ A,B is an element of A there is a linear derivation $ \delta _{A, B}: \mathcal {A}\rightarrow \mathcal {A} $ delta A,B:A -> A such that $ \delta (A)B + A\delta (B) = \delta _{A, B}(AB) $ delta(A)B+A delta(B)=delta A,B(AB), then delta is a linear derivation. It is a positive answer to the problem on semi-finite factor von Neumann algebra posed by Moln & aacute;r in the paper [A new look at local maps on algebraic structures of matrices and operators, New York J Math 28 (2022)].
引用
收藏
页数:8
相关论文
共 50 条
  • [1] 2-Local derivations on von Neumann algebras
    Ayupov, Shavkat
    Kudaybergenov, Karimbergen
    POSITIVITY, 2015, 19 (03) : 445 - 455
  • [2] 2-Local derivations on von Neumann algebras
    Shavkat Ayupov
    Karimbergen Kudaybergenov
    Positivity, 2015, 19 : 445 - 455
  • [3] Approximately 2-Local Derivations on the Finite Von Neumann Algebras
    Tao, Fazhan
    Hou, Chengjun
    Deng, Mingcong
    2013 INTERNATIONAL CONFERENCE ON ADVANCED MECHATRONIC SYSTEMS (ICAMECHS), 2013, : 720 - 723
  • [4] THE STRUCTURE OF 2-LOCAL LIE DERIVATIONS ON VON NEUMANN ALGEBRAS
    Yang, Bing
    Fang, Xiaochun
    ANNALS OF FUNCTIONAL ANALYSIS, 2019, 10 (02): : 242 - 251
  • [5] 2-LOCAL DERIVATIONS ON SEMI-FINITE VON NEUMANN ALGEBRAS
    Ayupov, Shavkat
    Arzikulov, Farkhad
    GLASGOW MATHEMATICAL JOURNAL, 2014, 56 (01) : 9 - 12
  • [6] Nonlinear 2-local Lie n-derivations of von Neumann algebras
    Zhao, Xingpeng
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (04) : 1457 - 1465
  • [7] Weak*-2-Local Derivations on Semi-finite von Neumann Algebras
    Yang, Bing
    Hou, Chengjun
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2022, 16 (04)
  • [8] Approximately 2-Local Derivations on the Semi-finite von Neumann Algebras
    Zhao X.
    Fang X.
    Yang B.
    Tongji Daxue Xuebao/Journal of Tongji University, 2019, 47 (09): : 1350 - 1354
  • [9] 2-Local Lie derivations on semi-finite factor von Neumann algebras
    Liu, Lei
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (09): : 1679 - 1686
  • [10] A survey on local and 2-local derivations on C*- and von Neuman algebras
    Ayupov, Shavkat
    Kudaybergenov, Karimbergen
    Peralta, Antonio M.
    TOPICS IN FUNCTIONAL ANALYSIS AND ALGEBRA, 2016, 672 : 73 - 126