On 2-local derivations of von Neumann algebras

被引:0
|
作者
Liu, Lei [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
Derivations; 2-local derivations; von Neumann algebras; AUTOMORPHISMS;
D O I
10.1080/03081087.2024.2400490
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let $ \mathcal {A} $ A be a semi-finite factor von Neumann algebra. We prove that if a map $ \delta : \mathcal {A}\rightarrow \mathcal {A} $ delta:A -> A satisfies that for any $ A, B\in \mathcal {A} $ A,B is an element of A there is a linear derivation $ \delta _{A, B}: \mathcal {A}\rightarrow \mathcal {A} $ delta A,B:A -> A such that $ \delta (A)B + A\delta (B) = \delta _{A, B}(AB) $ delta(A)B+A delta(B)=delta A,B(AB), then delta is a linear derivation. It is a positive answer to the problem on semi-finite factor von Neumann algebra posed by Moln & aacute;r in the paper [A new look at local maps on algebraic structures of matrices and operators, New York J Math 28 (2022)].
引用
收藏
页数:8
相关论文
共 50 条
  • [31] 2-Local Derivations on Some C*-Algebras
    Fard, Meysam Habibzadeh
    Sahleh, Abbas
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2019, 45 (03) : 649 - 656
  • [32] A Kowalski-Sodkowski theorem for 2-local -homomorphisms on von Neumann algebras
    Burgos, Maria
    Fernandez-Polo, Francisco J.
    Garces, Jorge J.
    Peralta, Antonio M.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2015, 109 (02) : 551 - 568
  • [33] 2-local derivations on AW*-algebras of type I
    Ayupov S.
    Arzikulov F.
    Lobachevskii Journal of Mathematics, 2017, 38 (1) : 148 - 161
  • [34] Local and 2-Local Derivations and Automorphisms on Simple Leibniz Algebras
    Shavkat Ayupov
    Karimbergen Kudaybergenov
    Bakhrom Omirov
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 2199 - 2234
  • [35] Local and 2-Local Derivations and Automorphisms on Simple Leibniz Algebras
    Ayupov, Shavkat
    Kudaybergenov, Karimbergen
    Omirov, Bakhrom
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (03) : 2199 - 2234
  • [36] 2-LOCAL DERIVATIONS ON ALGEBRAS OF LOCALLY MEASURABLE OPERATORS
    Ayupov, Shavkat Abdullaevich
    Kudaybergenov, Karimbergen
    Alauadinov, Amir
    ANNALS OF FUNCTIONAL ANALYSIS, 2013, 4 (02) : 110 - 117
  • [37] Local and 2-Local Derivations of Locally Simple Lie Algebras
    Ayupov S.
    Kudaybergenov K.
    Yusupov B.
    Journal of Mathematical Sciences, 2024, 278 (4) : 613 - 622
  • [38] 2-Local derivations of real AW*-algebras are derivation
    Dadakhodjaev, R. A.
    Rakhimov, A. A.
    POSITIVITY, 2021, 25 (04) : 1351 - 1356
  • [39] 2-Local derivations of real AW*-algebras are derivation
    R. A. Dadakhodjaev
    A. A. Rakhimov
    Positivity, 2021, 25 : 1351 - 1356
  • [40] Derivations, Local and 2-Local Derivations on Some Algebras of Operators on Hilbert C*-Modules
    Jun He
    Jiankui Li
    Danjun Zhao
    Mediterranean Journal of Mathematics, 2017, 14