Approximately 2-Local Derivations on the Finite Von Neumann Algebras

被引:0
|
作者
Tao, Fazhan [1 ]
Hou, Chengjun [1 ]
Deng, Mingcong [2 ]
机构
[1] Qufu Normal Univ, Dept Math, Qufu 273165, Peoples R China
[2] Tokyo Univ Agr & Technol, Dept Elect & Elect Engn, Tokyo 184858, Japan
基金
中国国家自然科学基金;
关键词
2-Local Derivations; The Von Neumann Algebras; Derivations; Trace;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The paper deals with approximately 2-local derivations on the finite von Neumann algebra. The definition of approximately 2-local derivations is considered based on the definition of 2-local derivation. That is, we prove that every approximately 2-local derivation on the finite von Neumann algebra is a derivation by using the property of the linear Jordan derivation.
引用
收藏
页码:720 / 723
页数:4
相关论文
共 50 条
  • [1] Approximately 2-Local Derivations on the Semi-finite von Neumann Algebras
    Zhao, Xingpeng
    Fang, Xiaochun
    Yang, Bing
    [J]. Tongji Daxue Xuebao/Journal of Tongji University, 2019, 47 (09): : 1350 - 1354
  • [2] 2-Local derivations on von Neumann algebras
    Ayupov, Shavkat
    Kudaybergenov, Karimbergen
    [J]. POSITIVITY, 2015, 19 (03) : 445 - 455
  • [3] On 2-local derivations of von Neumann algebras
    Liu, Lei
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2024,
  • [4] 2-Local derivations on von Neumann algebras
    Shavkat Ayupov
    Karimbergen Kudaybergenov
    [J]. Positivity, 2015, 19 : 445 - 455
  • [5] 2-LOCAL DERIVATIONS ON SEMI-FINITE VON NEUMANN ALGEBRAS
    Ayupov, Shavkat
    Arzikulov, Farkhad
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2014, 56 (01) : 9 - 12
  • [6] Weak*-2-Local Derivations on Semi-finite von Neumann Algebras
    Yang, Bing
    Hou, Chengjun
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2022, 16 (04)
  • [7] THE STRUCTURE OF 2-LOCAL LIE DERIVATIONS ON VON NEUMANN ALGEBRAS
    Yang, Bing
    Fang, Xiaochun
    [J]. ANNALS OF FUNCTIONAL ANALYSIS, 2019, 10 (02): : 242 - 251
  • [8] 2-Local Lie derivations on semi-finite factor von Neumann algebras
    Liu, Lei
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (09): : 1679 - 1686
  • [9] Nonlinear 2-local Lie n-derivations of von Neumann algebras
    Zhao, Xingpeng
    [J]. COMMUNICATIONS IN ALGEBRA, 2024, 52 (04) : 1457 - 1465
  • [10] Weak-2-local derivations on finite von Neumann algebras
    Yang, Bing
    Fang, Xiaochun
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (08): : 1520 - 1529