Bidirectional Phase Transformations in Multi-Principal Element Alloys: Mechanisms, Physics, and Mechanical Property Implications

被引:3
|
作者
Sun, Jiayi [1 ,2 ]
Li, Heqing [1 ]
Chen, Yujie [3 ]
An, Xianghai [1 ,2 ]
机构
[1] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia
[2] Univ Sydney, Sydney Nano Inst Sydney Nano, Sydney, NSW 2006, Australia
[3] Univ Adelaide, Sch Elect & Mech Engn, Adelaide, SA 5005, Australia
基金
澳大利亚研究理事会;
关键词
bidirectional phase transformation; intrinsic negative stacking fault energy; mechanical properties; Multi-principal element alloys; phase stability; HIGH-ENTROPY ALLOY; STACKING-FAULT ENERGY; MICROSTRUCTURAL EVOLUTION; GRAIN-SIZE; STRENGTH; DUCTILITY; TWIN; STABILITY; DESIGN; STRAIN;
D O I
10.1002/advs.202407283
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The emergence of multi-principal element alloys (MPEAs) heralds a transformative shift in the design of high-performance alloys. Their ingrained chemical complexities endow them with exceptional mechanical and functional properties, along with unparalleled microscopic plastic mechanisms, sparking widespread research interest within and beyond the metallurgy community. In this overview, a unique yet prevalent mechanistic process in the renowned FeMnCoCrNi-based MPEAs is focused on: the dynamic bidirectional phase transformation involving the forward transformation from a face-centered-cubic (FCC) matrix into a hexagonal-close-packed (HCP) phase and the reverse HCP-to-FCC transformation. The light is shed on the fundamental physical mechanisms and atomistic pathways of this intriguing dual-phase transformation. The paramount material parameter of intrinsic negative stacking fault energy in MPEAs and the crucial external factors c, furnishing thermodynamic, and kinetic impetus to trigger bidirectional transformation-induced plasticity (B-TRIP) mechanisms, are thorougly devled into. Furthermore, the profound significance of the distinct B-TRIP behavior in shaping mechanical properties and creating specialized microstructures c to harness superior material characteristics is underscored. Additionally, critical insights are offered into key challenges and future striving directions for comprehensively advancing the B-TRIP mechanism and the mechanistic design of next-generation high-performing MPEAs. The emergence of multi-principal element alloys (MPEAs) signifies a transformative breakthrough in high-performance alloy design. This review explores the unique bidirectional phase transformation in MPEAs, shedding light on fundamental mechanisms, intrinsic and external factors driving this mechanistic process. It underscores its profound significance in shaping mechanical properties and microstructures, offering critical insights into challenges and future directions for advancing MPEAs. image
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Microstructural Impacts on the Oxidation of Multi-Principal Element Alloys
    Pavel, Michael J.
    Weaver, Mark L.
    HIGH TEMPERATURE CORROSION OF MATERIALS, 2024, 101 (03) : 413 - 432
  • [32] Revealing the effect of inverse dislocation pileups on the mechanical properties of multi-principal element alloys
    Shuang, Fei
    Xue, Jian
    Aifantis, Katerina E.
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2024, 190 : 155 - 171
  • [33] Lattice distortion dependent physical and mechanical properties of VCoNi multi-principal element alloys
    Han, Zebin
    Peng, Shenyou
    Feng, Hui
    Chen, Yang
    Li, Jia
    Fang, Qihong
    Journal of Alloys and Compounds, 1600, 1005
  • [34] Achieving ultra hard refractory multi-principal element alloys via mechanical alloying
    Smeltzer, Joshua A.
    Marvel, Christopher J.
    Hornbuckle, B. Chad
    Roberts, Anthony J.
    Marsico, Joseph M.
    Giri, Anit K.
    Darling, Kristopher A.
    Rickman, Jeffrey M.
    Chan, Helen M.
    Harmer, Martin P.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 763
  • [35] Refractory multi-principal element alloys MoxNbTiZry: Microstructure, mechanical properties and oxidation resistance
    Tang, Ye
    Xie, Zhixiong
    Yang, Tao
    Peng, Youhang
    Liu, Yushuai
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2025, 130
  • [36] Lattice distortion dependent physical and mechanical properties of VCoNi multi-principal element alloys
    Han, Zebin
    Peng, Shenyou
    Feng, Hui
    Chen, Yang
    Li, Jia
    Fang, Qihong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1005
  • [37] Design of TiZrNbTa multi-principal element alloys with outstanding mechanical properties and wear resistance
    Li, Zheng
    Lai, Weiji
    Tong, Xin
    You, Deqiang
    Li, Wei
    Wang, Xiaojian
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 845
  • [38] A comparison of explainable artificial intelligence methods in the phase classification of multi-principal element alloys
    Kyungtae Lee
    Mukil V. Ayyasamy
    Yangfeng Ji
    Prasanna V. Balachandran
    Scientific Reports, 12
  • [39] A comparison of explainable artificial intelligence methods in the phase classification of multi-principal element alloys
    Lee, Kyungtae
    Ayyasamy, Mukil V.
    Ji, Yangfeng
    Balachandran, Prasanna V.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [40] Evaluation of Calphad Approach and Empirical Rules on the Phase Stability of Multi-principal Element Alloys
    Song-Mao Liang
    Rainer Schmid-Fetzer
    Journal of Phase Equilibria and Diffusion, 2017, 38 : 369 - 381