Bidirectional Phase Transformations in Multi-Principal Element Alloys: Mechanisms, Physics, and Mechanical Property Implications

被引:3
|
作者
Sun, Jiayi [1 ,2 ]
Li, Heqing [1 ]
Chen, Yujie [3 ]
An, Xianghai [1 ,2 ]
机构
[1] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia
[2] Univ Sydney, Sydney Nano Inst Sydney Nano, Sydney, NSW 2006, Australia
[3] Univ Adelaide, Sch Elect & Mech Engn, Adelaide, SA 5005, Australia
基金
澳大利亚研究理事会;
关键词
bidirectional phase transformation; intrinsic negative stacking fault energy; mechanical properties; Multi-principal element alloys; phase stability; HIGH-ENTROPY ALLOY; STACKING-FAULT ENERGY; MICROSTRUCTURAL EVOLUTION; GRAIN-SIZE; STRENGTH; DUCTILITY; TWIN; STABILITY; DESIGN; STRAIN;
D O I
10.1002/advs.202407283
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The emergence of multi-principal element alloys (MPEAs) heralds a transformative shift in the design of high-performance alloys. Their ingrained chemical complexities endow them with exceptional mechanical and functional properties, along with unparalleled microscopic plastic mechanisms, sparking widespread research interest within and beyond the metallurgy community. In this overview, a unique yet prevalent mechanistic process in the renowned FeMnCoCrNi-based MPEAs is focused on: the dynamic bidirectional phase transformation involving the forward transformation from a face-centered-cubic (FCC) matrix into a hexagonal-close-packed (HCP) phase and the reverse HCP-to-FCC transformation. The light is shed on the fundamental physical mechanisms and atomistic pathways of this intriguing dual-phase transformation. The paramount material parameter of intrinsic negative stacking fault energy in MPEAs and the crucial external factors c, furnishing thermodynamic, and kinetic impetus to trigger bidirectional transformation-induced plasticity (B-TRIP) mechanisms, are thorougly devled into. Furthermore, the profound significance of the distinct B-TRIP behavior in shaping mechanical properties and creating specialized microstructures c to harness superior material characteristics is underscored. Additionally, critical insights are offered into key challenges and future striving directions for comprehensively advancing the B-TRIP mechanism and the mechanistic design of next-generation high-performing MPEAs. The emergence of multi-principal element alloys (MPEAs) signifies a transformative breakthrough in high-performance alloy design. This review explores the unique bidirectional phase transformation in MPEAs, shedding light on fundamental mechanisms, intrinsic and external factors driving this mechanistic process. It underscores its profound significance in shaping mechanical properties and microstructures, offering critical insights into challenges and future directions for advancing MPEAs. image
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Phase classification of multi-principal element alloys via interpretable machine learning
    Kyungtae Lee
    Mukil V. Ayyasamy
    Paige Delsa
    Timothy Q. Hartnett
    Prasanna V. Balachandran
    npj Computational Materials, 8
  • [22] Microstructural Impacts on the Oxidation of Multi-Principal Element Alloys
    Michael J. Pavel
    Mark L. Weaver
    High Temperature Corrosion of Materials, 2024, 101 : 389 - 412
  • [23] Review: Multi-principal element alloys by additive manufacturing
    Li, Chenze
    Ferry, Michael
    Kruzic, Jamie J.
    Li, Xiaopeng
    JOURNAL OF MATERIALS SCIENCE, 2022, 57 (21) : 9903 - 9935
  • [24] Origin of radiation resistance in multi-principal element alloys
    Hyeon-Seok Do
    Byeong-Joo Lee
    Scientific Reports, 8
  • [25] Directed Energy Deposition of Multi-Principal Element Alloys
    Sreeramagiri, Praveen
    Balasubramanian, Ganesh
    FRONTIERS IN MATERIALS, 2022, 9
  • [26] Additive Manufacturing of CrFeNiTi Multi-Principal Element Alloys
    Reiberg, Marius
    Hitzler, Leonhard
    Apfelbacher, Lukas
    Schanz, Jochen
    Kolb, David
    Riegel, Harald
    Werner, Ewald
    MATERIALS, 2022, 15 (22)
  • [27] Origin of radiation resistance in multi-principal element alloys
    Do, Hyeon-Seok
    Lee, Byeong-Joo
    SCIENTIFIC REPORTS, 2018, 8
  • [28] Review: Multi-principal element alloys by additive manufacturing
    Chenze Li
    Michael Ferry
    Jamie J. Kruzic
    Xiaopeng Li
    Journal of Materials Science, 2022, 57 : 9903 - 9935
  • [29] Controlling the corrosion resistance of multi-principal element alloys
    Scully, John R.
    Inman, Samuel B.
    Gerard, Angela Y.
    Taylor, Christopher D.
    Windl, Wolfgang
    Schreiber, Daniel K.
    Lu, Pin
    Saal, James E.
    Frankel, Gerald S.
    SCRIPTA MATERIALIA, 2020, 188 (188) : 96 - 101
  • [30] Microstructural, phase, and thermophysical stability of CrMoNbV refractory multi-principal element alloys
    Shittu, Jibril
    Rietema, Connor J.
    Juhasz, Michael
    Ellyson, Benjamin
    Elder, Kate L. M.
    Bocklund, Brandon J.
    Sims, Zachary C.
    Li, Tian T.
    Henderson, Hunter B.
    Berry, Joel
    Samanta, Amit
    Voisin, Thomas
    Baker, Alexander A.
    Mccall, Scott K.
    Perron, Aurelien P.
    Mckeown, Joseph T.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 977