THE CALDERON PROBLEM FOR SPACE-TIME FRACTIONAL PARABOLIC OPERATORS WITH VARIABLE COEFFICIENTS

被引:0
|
作者
Banerjee, Agnid [1 ]
Senapati, Soumen [2 ]
机构
[1] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85281 USA
[2] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math, A-4040 Linz, Austria
关键词
anisotropic nonlo cal parabolic Caldero'; n problem; parabolic extension problem; unique continuation; Carleman estimate; UNIQUE CONTINUATION PROPERTY; ELLIPTIC-OPERATORS; GLOBAL UNIQUENESS; EXTENSION PROBLEM; INVERSE PROBLEM; APPROXIMATION; MONOTONICITY; EQUATIONS;
D O I
10.1137/23M1584137
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study an inverse problem for variable coefficient fractional parabolic operators of the form (\partial t - div(A(x)\nabla x))s + q(x,t) for s \in (0,1) and show the unique recovery of q from exterior measured data. Similar to the fractional elliptic case, we use a Runge-type approximation argument, which is obtained via a global weak unique continuation property. The proof of such a unique continuation result involves a new Carleman estimate for the associated variable coefficient extension operator. In the latter part of the work, we prove analogous unique determination results for fractional parabolic operators with drift.
引用
收藏
页码:4759 / 4810
页数:52
相关论文
共 50 条