THE CALDERON PROBLEM FOR SPACE-TIME FRACTIONAL PARABOLIC OPERATORS WITH VARIABLE COEFFICIENTS

被引:0
|
作者
Banerjee, Agnid [1 ]
Senapati, Soumen [2 ]
机构
[1] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85281 USA
[2] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math, A-4040 Linz, Austria
关键词
anisotropic nonlo cal parabolic Caldero'; n problem; parabolic extension problem; unique continuation; Carleman estimate; UNIQUE CONTINUATION PROPERTY; ELLIPTIC-OPERATORS; GLOBAL UNIQUENESS; EXTENSION PROBLEM; INVERSE PROBLEM; APPROXIMATION; MONOTONICITY; EQUATIONS;
D O I
10.1137/23M1584137
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study an inverse problem for variable coefficient fractional parabolic operators of the form (\partial t - div(A(x)\nabla x))s + q(x,t) for s \in (0,1) and show the unique recovery of q from exterior measured data. Similar to the fractional elliptic case, we use a Runge-type approximation argument, which is obtained via a global weak unique continuation property. The proof of such a unique continuation result involves a new Carleman estimate for the associated variable coefficient extension operator. In the latter part of the work, we prove analogous unique determination results for fractional parabolic operators with drift.
引用
收藏
页码:4759 / 4810
页数:52
相关论文
共 50 条
  • [21] CAUCHY-PROBLEM FOR PARABOLIC DIFFERENTIAL-DIFFERENCE OPERATORS WITH VARIABLE-COEFFICIENTS
    RABINOVICH, VS
    DIFFERENTIAL EQUATIONS, 1983, 19 (06) : 768 - 775
  • [22] Numerical solution of space-time fractional convection-diffusion equations with variable coefficients using haar wavelets
    Wei, Jinxia
    Chen, Yiming
    Li, Baofeng
    Yi, Mingxu
    CMES - Computer Modeling in Engineering and Sciences, 2012, 89 (06): : 481 - 495
  • [23] Numerical Solution of Space-Time Fractional Convection-Diffusion Equations with Variable Coefficients Using Haar Wavelets
    Wei, Jinxia
    Chen, Yiming
    Li, Baofeng
    Yi, Mingxu
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2012, 89 (06): : 481 - 495
  • [24] Inverse Source Problem for the Space-Time Fractional Parabolic Equation on a Metric Star Graph with an Integral Overdetermination Condition
    Ashurov, R. R.
    Sobirov, Z. A.
    Turemuratova, A. A.
    MATHEMATICAL NOTES, 2024, 116 (5-6) : 892 - 904
  • [25] Solving Parabolic and Hyperbolic Equations with Variable Coefficients Using Space-Time Localized Radial Basis Function Collocation Method
    Hamaidi, Mohammed
    Naji, Ahmed
    Taik, Ahmed
    MODELLING AND SIMULATION IN ENGINEERING, 2021, 2021
  • [26] Inverse source problem for a space-time fractional diffusion equation
    Mohamed BenSaleh
    Hassine Maatoug
    Ricerche di Matematica, 2024, 73 : 681 - 713
  • [27] Inverse source problem for a space-time fractional diffusion equation
    BenSaleh, Mohamed
    Maatoug, Hassine
    RICERCHE DI MATEMATICA, 2024, 73 (02) : 681 - 713
  • [28] INVERSE SOURCE PROBLEM FOR A SPACE-TIME FRACTIONAL DIFFUSION EQUATION
    Ali, Muhammad
    Aziz, Sara
    Malik, Salman A.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (03) : 844 - 863
  • [29] Parabolic equations with non-linear, degenerate and space-time dependent operators
    Porzio, Maria Michaela
    Pozio, Maria Assunta
    JOURNAL OF EVOLUTION EQUATIONS, 2008, 8 (01) : 31 - 70
  • [30] Minimal residual space-time discretizations of parabolic equations: Asymmetric spatial operators
    Stevenson, Rob
    Westerdiep, Jan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 101 : 107 - 118