anisotropic nonlo cal parabolic Caldero';
n problem;
parabolic extension problem;
unique continuation;
Carleman estimate;
UNIQUE CONTINUATION PROPERTY;
ELLIPTIC-OPERATORS;
GLOBAL UNIQUENESS;
EXTENSION PROBLEM;
INVERSE PROBLEM;
APPROXIMATION;
MONOTONICITY;
EQUATIONS;
D O I:
10.1137/23M1584137
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We study an inverse problem for variable coefficient fractional parabolic operators of the form (\partial t - div(A(x)\nabla x))s + q(x,t) for s \in (0,1) and show the unique recovery of q from exterior measured data. Similar to the fractional elliptic case, we use a Runge-type approximation argument, which is obtained via a global weak unique continuation property. The proof of such a unique continuation result involves a new Carleman estimate for the associated variable coefficient extension operator. In the latter part of the work, we prove analogous unique determination results for fractional parabolic operators with drift.
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100190, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100190, Peoples R China
Wu, Jie
Zhang, Liqun
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Hua Loo Keng Key Lab Math, Beijing 100190, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100190, Peoples R China