A Deep-Learning-Based Model for the Detection of Diseased Tomato Leaves

被引:3
|
作者
Abdullah, Akram [1 ]
Amran, Gehad Abdullah [2 ]
Tahmid, S. M. Ahanaf [1 ]
Alabrah, Amerah [3 ]
AL-Bakhrani, Ali A. [4 ]
Ali, Abdulaziz [5 ]
机构
[1] Chongqing Univ Technol, Sch Comp Sci & Engn, Chongqing 400054, Peoples R China
[2] Dalian Univ Technol, Dept Management Sci & Engn, Dalian 116024, Peoples R China
[3] King Saud Univ, Coll Comp & Informat Sci, Dept Informat Syst, Riyadh 11543, Saudi Arabia
[4] Dalian Univ Technol, Coll Software Engn, Dalian 116024, Peoples R China
[5] Wuhan Univ, Sch Remote Sensing & Informat Engn, 129 Luoyu Rd, Wuhan 430079, Peoples R China
来源
AGRONOMY-BASEL | 2024年 / 14卷 / 07期
关键词
YOLOV8s; Ultralytics Hub; detection; diseased leaf; tomato; YOLOV5; YAML file;
D O I
10.3390/agronomy14071593
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
This study introduces a You Only Look Once (YOLO) model for detecting diseases in tomato leaves, utilizing YOLOV8s as the underlying framework. The tomato leaf images, both healthy and diseased, were obtained from the Plant Village dataset. These images were then enhanced, implemented, and trained using YOLOV8s using the Ultralytics Hub. The Ultralytics Hub provides an optimal setting for training YOLOV8 and YOLOV5 models. The YAML file was carefully programmed to identify sick leaves. The results of the detection demonstrate the resilience and efficiency of the YOLOV8s model in accurately recognizing unhealthy tomato leaves, surpassing the performance of both the YOLOV5 and Faster R-CNN models. The results indicate that YOLOV8s attained the highest mean average precision (mAP) of 92.5%, surpassing YOLOV5's 89.1% and Faster R-CNN's 77.5%. In addition, the YOLOV8s model is considerably smaller and demonstrates a significantly faster inference speed. The YOLOV8s model has a significantly superior frame rate, reaching 121.5 FPS, in contrast to YOLOV5's 102.7 FPS and Faster R-CNN's 11 FPS. This illustrates the lack of real-time detection capability in Faster R-CNN, whereas YOLOV5 is comparatively less efficient than YOLOV8s in meeting these needs. Overall, the results demonstrate that the YOLOV8s model is more efficient than the other models examined in this study for object detection.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Deep-Learning-Based Approach for IoT Attack and Malware Detection
    Tasci, Burak
    APPLIED SCIENCES-BASEL, 2024, 14 (18):
  • [22] Deep-Learning-Based Thickness Detection Method of Ice Covering
    Pi, Xinyu
    Zhang, Guoyong
    He, Lifu
    Feng, Wenqing
    Luo, Jing
    Ouyang, Yi
    2021 11TH INTERNATIONAL CONFERENCE ON POWER AND ENERGY SYSTEMS (ICPES 2021), 2021, : 526 - 530
  • [23] Deep-Learning-Based Bughole Detection for Concrete Surface Image
    Yao, Gang
    Wei, Fujia
    Yang, Yang
    Sun, Yujia
    ADVANCES IN CIVIL ENGINEERING, 2019, 2019
  • [24] Annotated dataset for deep-learning-based bacterial colony detection
    László Makrai
    Bettina Fodróczy
    Sára Ágnes Nagy
    Péter Czeiszing
    István Csabai
    Géza Szita
    Norbert Solymosi
    Scientific Data, 10
  • [25] A Systematic Review on Deep-Learning-Based Phishing Email Detection
    Gray, L. Earl
    Conley, Justin M.
    Bursian, Steven J.
    Kamruzzaman, Abu
    Asif, Rameez
    ELECTRONICS, 2023, 12 (21)
  • [26] A Deep-learning-based Floor Detection System for the Visually Impaired
    Delahoz, Yueng
    Labrador, Miguel A.
    2017 IEEE 15TH INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, 15TH INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, 3RD INTL CONF ON BIG DATA INTELLIGENCE AND COMPUTING AND CYBER SCIENCE AND TECHNOLOGY CONGRESS(DASC/PICOM/DATACOM/CYBERSCI, 2017, : 883 - 888
  • [27] Deep-Learning-Based Network Intrusion Detection for SCADA Systems
    Yang, Huan
    Cheng, Liang
    Chuah, Mooi Choo
    2019 IEEE CONFERENCE ON COMMUNICATIONS AND NETWORK SECURITY (CNS), 2019,
  • [28] An efficient deep learning model for tomato disease detection
    Wang, Xuewei
    Liu, Jun
    PLANT METHODS, 2024, 20 (01)
  • [29] Solar Event Detection Using Deep-Learning-Based Object Detection Methods
    Baek, Ji-Hye
    Kim, Sujin
    Choi, Seonghwan
    Park, Jongyeob
    Kim, Jihun
    Jo, Wonkeun
    Kim, Dongil
    SOLAR PHYSICS, 2021, 296 (11)
  • [30] Solar Event Detection Using Deep-Learning-Based Object Detection Methods
    Ji-Hye Baek
    Sujin Kim
    Seonghwan Choi
    Jongyeob Park
    Jihun Kim
    Wonkeun Jo
    Dongil Kim
    Solar Physics, 2021, 296