On the distribution of αp modulo one in the intersection of two Piatetski-Shapiro sets

被引:0
|
作者
Li, Xiaotian [1 ]
Li, Jinjiang [2 ]
Zhang, Min [3 ]
机构
[1] Beijing Polytech, Sch Gen Educ, Beijing 100176, Peoples R China
[2] China Univ Min & Technol, Dept Math, Beijing 100083, Peoples R China
[3] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
来源
RAMANUJAN JOURNAL | 2024年 / 65卷 / 02期
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Distribution modulo one; Piatetski-Shapiro prime; Exponential sums; PRIME-NUMBERS;
D O I
10.1007/s11139-024-00914-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (sic)t(sic) denote the integer part of t is an element of R and parallel to x parallel to the distance from x to the nearest integer. Suppose that 1/2<gamma 2<gamma 1<1 are two fixed constants. In this paper, it is proved that, whenever alpha is an irrational number and beta is any real number, there exist infinitely many prime numbers p in the intersection of two Piatetski-Shapiro sets, i.e., p=(sic)n(1)(1/gamma 1)(sic)=(sic)n(2)(1/gamma 2)(sic), such that parallel to alpha p+beta parallel to<p-(12(gamma 1+gamma 2)-23)/(38)+epsilon, provided that 23/12<gamma 1+gamma 2<2. This result constitutes an generalization upon the previous result of Dimitrov (Indian J Pure Appl Math 54(3):858-867, 2023).
引用
收藏
页码:743 / 758
页数:16
相关论文
共 45 条