ANI neural network potentials for small molecule pKa prediction

被引:0
|
作者
Urquhart, Ross James [1 ]
van Teijlingen, Alexander [1 ]
Tuttle, Tell [1 ]
机构
[1] Univ Strathclyde, Dept Pure & Appl Chem, 295 Cathedral St, Glasgow City G1 1XL, Scotland
基金
英国工程与自然科学研究理事会;
关键词
GIBBS FREE-ENERGY; FORCE-FIELD; BASIS-SETS; SOLVATION; DESIGN;
D O I
10.1039/d4cp01982b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The pK(a) value of a molecule is of interest to chemists across a broad spectrum of fields including pharmacology, environmental chemistry and theoretical chemistry. Determination of pK(a) values can be accomplished through several experimental methods such as NMR techniques and titration together with computational techniques such as DFT calculations. However, all of these methods remain time consuming and computationally expensive. In this work we develop a method for the rapid calculation of pK(a) values of small molecules which utilises a combination of neural network potentials, low energy conformer searches and thermodynamic cycles. We show that neural network potentials trained on different phase and charge states can be employed in tandem to predict the full thermodynamic energy cycle of molecules. Focusing here on imidazolium derived carbene species, the method utilised can easily be extended to other functional groups of interest such as amines with further training.
引用
收藏
页码:23934 / 23943
页数:10
相关论文
共 50 条
  • [21] Cavity shape effect on pKa prediction of small amines
    Behjatmanesh-Ardakani, R.
    Karimi, M. A.
    Ebady, A.
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2009, 910 (1-3): : 99 - 103
  • [22] Overview of the SAMPL6 pKa challenge: evaluating small molecule microscopic and macroscopic pKa predictions
    Mehtap Işık
    Ariën S. Rustenburg
    Andrea Rizzi
    M. R. Gunner
    David L. Mobley
    John D. Chodera
    Journal of Computer-Aided Molecular Design, 2021, 35 : 131 - 166
  • [23] Overview of the SAMPL6 pKa challenge: evaluating small molecule microscopic and macroscopic pKa predictions
    Isik, Mehtap
    Rustenburg, Arien S.
    Rizzi, Andrea
    Gunner, M. R.
    Mobley, David L.
    Chodera, John D.
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2021, 35 (02) : 131 - 166
  • [24] Water Quality Prediction of Small Watershed Based on Wavelet Neural Network
    Ma, Chuang
    Li, Linfeng
    Zhou, Daiqi
    2019 INTERNATIONAL CONFERENCE ON CYBER-ENABLED DISTRIBUTED COMPUTING AND KNOWLEDGE DISCOVERY (CYBERC), 2019, : 456 - 463
  • [25] Small-scale fading prediction using an artificial neural network
    Östlin, E
    Zepernick, HJ
    Suzuki, H
    VTC2005-SPRING: 2005 IEEE 61ST VEHICULAR TECHNOLOGY CONFERENCE, VOLS 1-5, PROCEEDINGS, 2005, : 82 - 86
  • [26] Siamese Dense Neural Network for Software Defect Prediction With Small Data
    Zhao, Linchang
    Shang, Zhaowei
    Zhao, Ling
    Qin, Anyong
    Tang, Yuan Yan
    IEEE ACCESS, 2019, 7 : 7663 - 7677
  • [27] Auto3D: Automatic Generation of the Low-Energy 3D Structures with ANI Neural Network Potentials
    Liu, Zhen
    Zubatiuk, Tetiana
    Roitberg, Adrian
    Isayev, Olexandr
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2022, 62 (22) : 5373 - 5382
  • [28] Exploring the efficacy of small molecule inhibitors of AKAP-PKA interactions
    Moutty, Marie Christine
    Zuehlke, Kerstin
    Milic, Jelena
    Tabor, Vedrana
    Goncalves, Andrey
    Noack, Claudia
    Christian, Frank
    Grossmann, Solveig
    von Kries, Jens Peter
    Rosenthal, Walter
    Klussmann, Enno
    FASEB JOURNAL, 2011, 25
  • [29] PREDICTION OF THE HISTIDINE-95 PKA PERTURBATION IN TRIOSEPHOSPHATE ISOMERASE USING AN ELECTROSTATICALLY TRAINED NEURAL NETWORK (SONNIC)
    BROUGHTON, HB
    GREEN, SM
    RZEPA, HS
    JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS, 1992, (17) : 1178 - 1180
  • [30] Adding charge to neural network potentials
    Jie Pan
    Nature Computational Science, 2023, 3 : 816 - 816