On convergence of a q-random coordinate constrained algorithm for non-convex problems

被引:0
|
作者
Ghaffari-Hadigheh, A. [1 ]
Sinjorgo, L. [2 ]
Sotirov, R. [2 ]
机构
[1] Azarbaijan Shahid Madani Univ, Tabriz, Iran
[2] Tilburg Univ, EOR Dept, Tilburg, Netherlands
关键词
Random coordinate descent algorithm; Convergence analysis; Densest k-subgraph problem; Eigenvalue complementarity problem; DESCENT ALGORITHMS; SIMPLEX;
D O I
10.1007/s10898-024-01429-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose a random coordinate descent algorithm for optimizing a non-convex objective function subject to one linear constraint and simple bounds on the variables. Although it is common use to update only two random coordinates simultaneously in each iteration of a coordinate descent algorithm, our algorithm allows updating arbitrary number of coordinates. We provide a proof of convergence of the algorithm. The convergence rate of the algorithm improves when we update more coordinates per iteration. Numerical experiments on large scale instances of different optimization problems show the benefit of updating many coordinates simultaneously.
引用
收藏
页码:843 / 868
页数:26
相关论文
共 50 条
  • [41] Uniform Convergence of Gradients for Non-Convex Learning and Optimization
    Foster, Dylan J.
    Sekhari, Ayush
    Sridharan, Karthik
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [42] The Convergence Guarantees of a Non-Convex Approach for Sparse Recovery
    Chen, Laming
    Gu, Yuantao
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (15) : 3754 - 3767
  • [43] Global convergence of a non-convex Douglas–Rachford iteration
    Francisco J. Aragón Artacho
    Jonathan M. Borwein
    Journal of Global Optimization, 2013, 57 : 753 - 769
  • [44] A UNIFORM CORE CONVERGENCE RESULT FOR NON-CONVEX ECONOMIES
    CHENG, HC
    JOURNAL OF ECONOMIC THEORY, 1983, 31 (02) : 269 - 282
  • [45] On the Convergence of Non-Convex Phase Retrieval With Denoising Priors
    Xue, Duoduo
    Zheng, Ziyang
    Dai, Wenrui
    Li, Chenglin
    Zou, Junni
    Xiong, Hongkai
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 4424 - 4439
  • [46] Global convergence of a curvilinear search for non-convex optimization
    Michael Bartholomew-Biggs
    Salah Beddiaf
    Bruce Christianson
    Numerical Algorithms, 2023, 92 : 2025 - 2043
  • [47] Non-asymptotic convergence bounds for modified tamed unadjusted Langevin algorithm in non-convex setting
    Neufeld, Ariel
    Ng, Matthew
    Zhang, Ying
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 543 (01)
  • [48] Fast Block Coordinate Descent for Non-Convex Group Regularizations
    Ida, Yasutoshi
    Kanai, Sekitoshi
    Kumagai, Atsutoshi
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 206, 2023, 206
  • [49] STABILITY FOR A CLASS OF NON-CONVEX OPTIMIZATION PROBLEMS
    ZALINESCU, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 307 (12): : 643 - 646
  • [50] AN EFFICIENT METHOD FOR NON-CONVEX QCQP PROBLEMS
    Osmanpour, Naser
    Keyanpour, Mohammad
    PACIFIC JOURNAL OF OPTIMIZATION, 2021, 17 (01): : 23 - 45